algorithm engineering
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 3)

Author(s):  
Aleksander Figiel ◽  
Anne-Sophie Himmel ◽  
André Nichterlein ◽  
Rolf Niedermeier

2021 ◽  
Vol 25 (1) ◽  
pp. 521-547
Author(s):  
Aleksander Figiel ◽  
Anne-Sophie Himmel ◽  
André Nichterlein ◽  
Rolf Niedermeier

2020 ◽  
Vol 54 (6) ◽  
pp. 1571-1600
Author(s):  
Moritz Baum ◽  
Julian Dibbelt ◽  
Dorothea Wagner ◽  
Tobias Zündorf

We study the problem of computing constrained shortest paths for battery electric vehicles. Because battery capacities are limited, fastest routes are often infeasible. Instead, users are interested in fast routes on which the energy consumption does not exceed the battery capacity. For that, drivers can deliberately reduce speed to save energy. Hence, route planning should provide both path and speed recommendations. To tackle the resulting [Formula: see text]-hard optimization problem, previous work trades correctness or accuracy of the underlying model for practical running times. We present a novel framework to compute optimal constrained shortest paths (without charging stops) for electric vehicles that uses more realistic physical models, while taking speed adaptation into account. Careful algorithm engineering makes the approach practical even on large, realistic road networks: We compute optimal solutions in less than a second for typical battery capacities, matching the performance of previous inexact methods. For even faster query times, the approach can easily be extended with heuristics that provide high quality solutions within milliseconds.


2020 ◽  
Vol 62 (3-4) ◽  
pp. 135-144
Author(s):  
Ulrich Meyer ◽  
Manuel Penschuck

AbstractThe selection of input data is a crucial step in virtually every empirical study. Experimental campaigns in algorithm engineering, experimental algorithmics, network analysis, and many other fields often require suited network data. In this context, synthetic graphs play an important role, as data sets of observed networks are typically scarce, biased, not sufficiently understood, and may pose logistic and legal challenges. Just like processing huge graphs becomes challenging in the big data setting, new algorithmic approaches are necessary to generate such massive instances efficiently. Here, we update our previous survey [35] on results for large-scale graph generation obtained within the DFG priority programme SPP 1736 (Algorithms for Big Data); to this end, we broaden the scope and include recently published results.


2020 ◽  
Vol 8 (6) ◽  
pp. 5482-5485

Most of the times, data is created for the Intrusion Detection System (IDS) only when the set of all real working environments are explored under all the possibilities of attacks, which is an expensive task. Network Intrusion Detection software shields a system and computer network from staff and non-authorized users. The detector’s ultimate task is to build a foreboding classifier (i.e. a model) which would help in distinguishing between friendly and non-friendly connections, known as attacks or intrusions.This problem in network sectors is prevented by predicting whether the connection is attacked or not attacked from the dataset. We are using i.e. KDDCup99 using bio inspired machine learning techniques (like Artificial Neural Network). Bio inspired algorithm is a game changer in computer science. The extent of this field is really magnificent as compared to nature around it, complications of computer science are only a subset of it, opening a new era in next generation computing, modelling and algorithm engineering. The aim is to investigate bio inspired machine learning based techniques for better packet connection transfers forecasting by prediction results in best accuracy and to propose this machine learning-based method to accurately predict the DOS, R2L, U2R, Probe and overall attacks by predicting results in the form of best accuracy from comparing supervised classification machine learning algorithms. Furthermore, to compare and discuss the performance of various ML algorithms from the provided dataset with classification and evaluation report, finding and analysing the confusion matrix and for classifying data from the priority and result shows that the effectiveness of the proposed system i.e. bio inspired machine learning algorithm technique can be put on test with best accuracy along with precision, specificity, sensitivity, F1 Score and Recall


2019 ◽  
Author(s):  
Marcus Ludwig ◽  
Louis-Félix Nothias ◽  
Kai Dührkop ◽  
Irina Koester ◽  
Markus Fleischauer ◽  
...  

1AbstractThe confident high-throughput identification of small molecules remains one of the most challenging tasks in mass spectrometry-based metabolomics. SIRIUS has become a powerful tool for the interpretation of tandem mass spectra, and shows outstanding performance for identifying the molecular formula of a query compound, being the first step of structure identification. Nevertheless, the identification of both molecular formulas for large compounds above 500 Daltons and novel molecular formulas remains highly challenging. Here, we present ZODIAC, a network-based algorithm for the de novo estimation of molecular formulas. ZODIAC reranks SIRIUS’ molecular formula candidates, combining fragmentation tree computation with Bayesian statistics using Gibbs sampling. Through careful algorithm engineering, ZODIAC’s Gibbs sampling is very swift in practice. ZODIAC decreases incorrect annotations 16.2-fold on a challenging plant extract dataset with most compounds above 700 Dalton; we then show improvements on four additional, diverse datasets. Our analysis led to the discovery of compounds with novel molecular formulas such as C24H47BrNO8P which, as of today, is not present in any publicly available molecular structure databases.


Algorithms ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 229
Author(s):  
Mattia D’Emidio ◽  
Daniele Frigioni

The purpose of this special issue of Algorithms was to attract papers presenting original research in the area of algorithm engineering. In particular, submissions concerning the design, analysis, implementation, tuning, and experimental evaluation of discrete algorithms and data structures, and/or addressing methodological issues and standards in algorithmic experimentation were encouraged. Papers dealing with advanced models of computing, including memory hierarchies, cloud architectures, and parallel processing were also welcome. In this regard, we solicited contributions from all most prominent areas of applied algorithmic research, which include but are not limited to graphs, databases, computational geometry, big data, networking, combinatorial aspects of scientific computing, and computational problems in the natural sciences or engineering.


Sign in / Sign up

Export Citation Format

Share Document