correspondence matching
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 1)

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4719
Author(s):  
Huei-Yung Lin ◽  
Yuan-Chi Chung ◽  
Ming-Liang Wang

This paper presents a novel self-localization technique for mobile robots using a central catadioptric camera. A unified sphere model for the image projection is derived by the catadioptric camera calibration. The geometric property of the camera projection model is utilized to obtain the intersections of the vertical lines and ground plane in the scene. Different from the conventional stereo vision techniques, the feature points are projected onto a known planar surface, and the plane equation is used for depth computation. The 3D coordinates of the base points on the ground are calculated using the consecutive image frames. The derivation of motion trajectory is then carried out based on the computation of rotation and translation between the robot positions. We develop an algorithm for feature correspondence matching based on the invariability of the structure in the 3D space. The experimental results obtained using the real scene images have demonstrated the feasibility of the proposed method for mobile robot localization applications.


2021 ◽  
Vol 17 (2) ◽  
pp. e1008566
Author(s):  
Alexandre Pitti ◽  
Mathias Quoy ◽  
Sofiane Boucenna ◽  
Catherine Lavandier

We propose a developmental model inspired by the cortico-basal system (CX-BG) for vocal learning in babies and for solving the correspondence mismatch problem they face when they hear unfamiliar voices, with different tones and pitches. This model is based on the neural architecture INFERNO standing for Iterative Free-Energy Optimization of Recurrent Neural Networks. Free-energy minimization is used for rapidly exploring, selecting and learning the optimal choices of actions to perform (eg sound production) in order to reproduce and control as accurately as possible the spike trains representing desired perceptions (eg sound categories). We detail in this paper the CX-BG system responsible for linking causally the sound and motor primitives at the order of a few milliseconds. Two experiments performed with a small and a large audio database show the capabilities of exploration, generalization and robustness to noise of our neural architecture in retrieving audio primitives during vocal learning and during acoustic matching with unheared voices (different genders and tones).


Author(s):  
Baihan Lin

This paper proposed a new interaction paradigm in the virtual reality (VR) environments, which consists of a virtual mirror or window projected onto a virtual surface, representing the correct perspective geometry of a mirror or window reflecting the real world. This technique can be applied to various videos, live streaming apps, augmented and virtual reality settings to provide an interactive and immersive user experience. To support such a perspective-accurate representation, we implemented computer vision algorithms for feature detection and correspondence matching. To constrain the solutions, we incorporated an automatically tuning scaling factor upon the homography transform matrix such that each image frame follows a smooth transition with the user in sight. The system is a real-time rendering framework where users can engage their real-life presence with the virtual space.


2020 ◽  
Vol 135 ◽  
pp. 402-408 ◽  
Author(s):  
Rafaël Brandt ◽  
Nicola Strisciuglio ◽  
Nicolai Petkov ◽  
Michael H.F. Wilkinson

2020 ◽  
Vol 7 (1) ◽  
pp. 18-29
Author(s):  
Zhiyu Sun ◽  
Yusen He ◽  
Andrey Gritsenko ◽  
Amaury Lendasse ◽  
Stephen Baek

Abstract A robust and informative local shape descriptor plays an important role in mesh registration. In this regard, spectral descriptors that are based on the spectrum of the Laplace–Beltrami operator have been a popular subject of research for the last decade due to their advantageous properties, such as isometry invariance. Despite such, however, spectral descriptors often fail to give a correct similarity measure for nonisometric cases where the metric distortion between the models is large. Hence, they are not reliable for correspondence matching problems when the models are not isometric. In this paper, it is proposed a method to improve the similarity metric of spectral descriptors for correspondence matching problems. We embed a spectral shape descriptor into a different metric space where the Euclidean distance between the elements directly indicates the geometric dissimilarity. We design and train a Siamese neural network to find such an embedding, where the embedded descriptors are promoted to rearrange based on the geometric similarity. We demonstrate our approach can significantly enhance the performance of the conventional spectral descriptors by the simple augmentation achieved via the Siamese neural network in comparison to other state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document