mesenchymal progenitor cell
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 4)

H-INDEX

26
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthew Prideaux ◽  
Christian S. Wright ◽  
Megan L. Noonan ◽  
Xin Yi ◽  
Erica L. Clinkenbeard ◽  
...  

AbstractMesenchymal progenitors differentiate into several tissues including bone, cartilage, and adipose. Targeting these cells in vivo is challenging, making mesenchymal progenitor cell lines valuable tools to study tissue development. Mesenchymal stem cells (MSCs) can be isolated from humans and animals; however, obtaining homogenous, responsive cells in a reproducible fashion is challenging. As such, we developed two mesenchymal progenitor cell (MPC) lines, MPC1 and MPC2, generated from bone marrow of male C57BL/6 mice. These cells were immortalized using the temperature sensitive large T-antigen, allowing for thermal control of proliferation and differentiation. Both MPC1 and MPC2 cells are capable of osteogenic, adipogenic, and chondrogenic differentiation. Under osteogenic conditions, both lines formed mineralized nodules, and stained for alizarin red and alkaline phosphatase, while expressing osteogenic genes including Sost, Fgf23, and Dmp1. Sost and Dmp1 mRNA levels were drastically reduced with addition of parathyroid hormone, thus recapitulating in vivo responses. MPC cells secreted intact (iFGF23) and C-terminal (cFGF23) forms of the endocrine hormone FGF23, which was upregulated by 1,25 dihydroxy vitamin D (1,25D). Both lines also rapidly entered the adipogenic lineage, expressing adipose markers after 4 days in adipogenic media. MPC cells were also capable of chondrogenic differentiation, displaying increased expression of cartilaginous genes including aggrecan, Sox9, and Comp. With the ability to differentiate into multiple mesenchymal lineages and mimic in vivo responses of key regulatory genes/proteins, MPC cells are a valuable model to study factors that regulate mesenchymal lineage allocation as well as the mechanisms that dictate transcription, protein modification, and secretion of these factors.



Biomaterials ◽  
2021 ◽  
Vol 270 ◽  
pp. 120662
Author(s):  
Brian D. Cosgrove ◽  
Claudia Loebel ◽  
Tristan P. Driscoll ◽  
Tonia K. Tsinman ◽  
Eric N. Dai ◽  
...  


2021 ◽  
Author(s):  
Matthew Prideaux ◽  
Christian Wright ◽  
Megan Noonan ◽  
Xin Yi ◽  
Erica Clinkenbeard ◽  
...  

Abstract Mesenchymal progenitors differentiate into several tissues including bone, cartilage, and adipose. Targeting these cells in vivo is challenging, making mesenchymal progenitor cell lines valuable tools to study tissue development. Mesenchymal stem cells (MSCs) can be isolated from humans and animals; however, obtaining homogenous, responsive cells in a reproducible fashion is challenging. As such, we developed two mesenchymal progenitor cell (MPC) lines, MPC1 and MPC2, generated from bone marrow of male C57BL/6 mice. These cells were immortalized using the temperature sensitive large T-antigen, allowing for thermal control of proliferation and differentiation. Both MPC1 and MPC2 cells are capable of osteogenic, adipogenic, and chondrogenic differentiation. Under osteogenic conditions, both lines formed mineralized nodules, and stained for alizarin red and alkaline phosphatase, while expressing osteogenic genes including Sost, Fgf23, and Dmp1. Sost and Dmp1 mRNA levels were drastically reduced with parathyroid hormone, thus recapitulating in vivo responses. MPC cells secreted intact (iFGF23) and C-terminal (cFGF23) forms of the endocrine hormone FGF23, which was upregulated by 1,25 dihydroxy vitamin D (1,25D). Both lines also rapidly entered the adipogenic lineage, expressing adipose markers after 4 days in adipogenic media. MPC cells were also capable of chondrogenic differentiation, displaying increased expression of cartilage genes including aggrecan, Sox9, and Comp. With the ability to differentiate into multiple mesenchymal lineages and mimic in vivo responses of key regulatory genes/proteins, MPC cells are a valuable model to study factors that regulate mesenchymal lineage allocation as well as the mechanisms that dictate transcription, protein modification, and secretion of these factors.



2020 ◽  
Author(s):  
Matthew Prideaux ◽  
Christian S. Wright ◽  
Megan L. Noonan ◽  
Xin Yi ◽  
Erica L. Clinkenbeard ◽  
...  

AbstractDifferentiation of multi-potent mesenchymal progenitor cells give rise to several tissue types including bone, cartilage, and adipose. In addition to the complication arising from the numerous spatial, temporal, and hormonal factors that regulate lineage allocation, targeting of these cells in vivo is challenging, making mesenchymal progenitor cell lines valuable tools to study both tissue development and the differentiated cell types. Mesenchymal stem cells (MSCs) can be isolated from humans and animals; however, obtaining homogenous, responsive cells in a reproducible fashion can be problematic. As such, we have developed two novel mesenchymal progenitor cell (MPC) lines, MPC1 and MPC2, which were generated from the bone marrow of male C57BL/6 mice. These cells were immortalized using the temperature sensitive large T-antigen, allowing for thermal control of proliferation and differentiation. Both MPC1 and MPC2 cell lines are capable of osteogenic, adipogenic, and chondrogenic differentiation. Under osteogenic conditions both cell lines formed discrete mineralized nodules, staining for alizarin red and alkaline phosphatase, while expressing high levels of osteogenic genes including Sost, Fgf23, and Dmp1. Sost and Dmp1 mRNA levels were drastically reduced with parathyroid hormone, thus recapitulating in vivo responses. MPC cells secreted both the intact (iFGF23) and C-terminal (cFGF23) forms of endocrine hormone FGF23, which was upregulated in the presence of 1,25 dihydroxy vitamin D (1,25D). In addition to osteogenic differentiation, both cell lines also rapidly entered the adipogenic lineage, expressing several adipose markers after only 4 days in adipogenic media. MPC cells were also capable of chondrogenic differentiation, displaying increased expression of common cartilage genes including aggrecan, sox9, and cartilage oligomeric matrix protein. With the ability to differentiate into multiple mesenchymal lineages and mimic in vivo responses of key regulatory genes/proteins, MPC cells are a valuable model to study factors that regulate mesenchymal lineage allocation as well as the mechanisms that dictate transcription, protein modification, and secretion of these factors.



2020 ◽  
Vol 28 ◽  
pp. S107
Author(s):  
K.M. Fagerlund ◽  
N. Habilainen-Kirillov ◽  
C.W. Lowik ◽  
A. Chan ◽  
J.M. Halleen


2020 ◽  
Vol 7 (7) ◽  
pp. 1903395 ◽  
Author(s):  
Philipp S. Lienemann ◽  
Queralt Vallmajo‐Martin ◽  
Panagiota Papageorgiou ◽  
Ulrich Blache ◽  
Stéphanie Metzger ◽  
...  


2019 ◽  
Vol 99 (2) ◽  
pp. 133-142 ◽  
Author(s):  
M. Nagata ◽  
N. Ono ◽  
W. Ono

Tooth eruption is a unique biological process by which highly mineralized tissues emerge into the outer world, and it occurs concomitantly with tooth root formation. These 2 processes have been considered independent phenomena; however, recent studies support the theory that they are indeed intertwined. Dental mesenchymal progenitor cells in the dental follicle lie at the heart of the coupling of these 2 processes, providing a source for diverse mesenchymal cells that support formation of the highly functional tooth root and the periodontal attachment apparatus, while facilitating formation of osteoclasts. These cells are regulated by autocrine signaling by parathyroid hormone–related protein (PTHrP) and its parathyroid hormone/PTHrP receptor PPR. This PTHrP-PPR signaling appears to crosstalk with other signaling pathways and regulates proper cell fates of mesenchymal progenitor cell populations. Disruption of this autocrine PTHrP-PPR signaling in these cells leads to defective formation of the periodontal attachment apparatus, tooth root malformation, and failure of tooth eruption in molars, which essentially recapitulate primary failure of eruption in humans, a rare genetic disorder exclusively affecting tooth eruption. Diversity and distinct functionality of these mesenchymal progenitor cell populations that regulate tooth eruption and tooth root formation are beginning to be unraveled.



Sign in / Sign up

Export Citation Format

Share Document