Soil moisture change analysis under watershed management practice using in situ and remote sensing data in a paired watershed

2021 ◽  
Vol 193 (5) ◽  
Author(s):  
Majid Kazemzadeh ◽  
Ali Salajegheh ◽  
Arash Malekian ◽  
Abdolmajid Liaghat ◽  
Hossein Hashemi
2020 ◽  
Author(s):  
Martin Schrön ◽  
Sascha E Oswald ◽  
Steffen Zacharias ◽  
Peter Dietrich ◽  
Sabine Attinger

<p>Cosmic-ray neutron albedo sensing (CRNS) is a modern technology that can be used to non-invasively measure the average water content in the environment (i.e., in soil, snow, or vegetation). The sensor footprint encompasses an area of 10-15 hectares and extends tens of decimeters deep into the soil. This method might have the potential to bridge the scale gap between conventional in-situ sensors and remote-sensing data in both, the horizontal and the vertical domain.</p><p>Currently, more than 200 sensors are operated in the growing networks of national and continental observatories. While single CRNS stations are continuously monitoring the local water dynamics at fixed field sites, mobile CRNS platforms are used for on-demand soil moisture mapping at the regional scale. The sensors are rapidly operational on any ground- or airborne vehicle. The data is particularly useful to study hydrological extreme events, heatwaves, and snow melt/accumulation, and it is being applied in hydrological models and agricultural irrigation management.</p><p>In the presentation we will explore the potential of the CRNS method to support and complement in-situ and remote-sensing data for hydrological event monitoring. We will discuss ongoing research activities that are aimed at improving the operationality, frequency, and spatial extend of CRNS measurements. New measurement strategies that are currently explored are, for example: dense clusters of 20 CRNS stations fully covering a 100 hectare catchment; heat wave monitoring with mobile car-based CRNS; regular soil/snow water mapping using mobile CRNS on cars and trains; and airborne surveys using CRNS on gyrocopters.</p><p>Future CRNS observations could provide a valuable contribution to the multi-sensor approach, e.g. to help tracking and characterizing surface water movement, to map regional-scale soil moisture patterns, or to calibrate and evaluate satellite data.</p>


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2003
Author(s):  
Ling Zhang ◽  
Zixuan Zhang ◽  
Zhaohui Xue ◽  
Hao Li

Soil moisture (SM) plays an important role for understanding Earth’s land and near-surface atmosphere interactions. Existing studies rarely considered using multi-source data and their sensitiveness to SM retrieval with few in-situ measurements. To solve this issue, we designed a SM retrieval method (Multi-MDA-RF) using random forest (RF) based on 29 features derived from passive microwave remote sensing data, optical remote sensing data, land surface models (LSMs), and other auxiliary data. To evaluate the importance of different features to SM retrieval, we first compared 10 filter or embedded type feature selection methods with sequential forward selection (SFS). Then, RF was employed to establish a nonlinear relationship between the in-situ SM measurements from sparse network stations and the optimal feature subset. The experiments were conducted in the continental U.S. (CONUS) using in-situ measurements during August 2015, with only 5225 training samples covering the selected feature subset. The experimental results show that mean decrease accuracy (MDA) is better than other feature selection methods, and Multi-MDA-RF outperforms the back-propagation neural network (BPNN) and generalized regression neural network (GRNN), with the R and unbiased root-mean-square error (ubRMSE) values being 0.93 and 0.032 cm3/cm3, respectively. In comparison with other SM products, Multi-MDA-RF is more accurate and can well capture the SM spatial dynamics.


2021 ◽  
Vol 13 (9) ◽  
pp. 1715
Author(s):  
Foyez Ahmed Prodhan ◽  
Jiahua Zhang ◽  
Fengmei Yao ◽  
Lamei Shi ◽  
Til Prasad Pangali Sharma ◽  
...  

Drought, a climate-related disaster impacting a variety of sectors, poses challenges for millions of people in South Asia. Accurate and complete drought information with a proper monitoring system is very important in revealing the complex nature of drought and its associated factors. In this regard, deep learning is a very promising approach for delineating the non-linear characteristics of drought factors. Therefore, this study aims to monitor drought by employing a deep learning approach with remote sensing data over South Asia from 2001–2016. We considered the precipitation, vegetation, and soil factors for the deep forwarded neural network (DFNN) as model input parameters. The study evaluated agricultural drought using the soil moisture deficit index (SMDI) as a response variable during three crop phenology stages. For a better comparison of deep learning model performance, we adopted two machine learning models, distributed random forest (DRF) and gradient boosting machine (GBM). Results show that the DFNN model outperformed the other two models for SMDI prediction. Furthermore, the results indicated that DFNN captured the drought pattern with high spatial variability across three penology stages. Additionally, the DFNN model showed good stability with its cross-validated data in the training phase, and the estimated SMDI had high correlation coefficient R2 ranges from 0.57~0.90, 0.52~0.94, and 0.49~0.82 during the start of the season (SOS), length of the season (LOS), and end of the season (EOS) respectively. The comparison between inter-annual variability of estimated SMDI and in-situ SPEI (standardized precipitation evapotranspiration index) showed that the estimated SMDI was almost similar to in-situ SPEI. The DFNN model provides comprehensive drought information by producing a consistent spatial distribution of SMDI which establishes the applicability of the DFNN model for drought monitoring.


Author(s):  
D. Varade ◽  
O. Dikshit

<p><strong>Abstract.</strong> Snow cover characterization and estimation of snow geophysical parameters is a significant area of research in water resource management and surface hydrological processes. With advances in spaceborne remote sensing, much progress has been achieved in the qualitative and quantitative characterization of snow geophysical parameters. However, most of the methods available in the literature are based on the microwave backscatter response of snow. These methods are mostly based on the remote sensing data available from active microwave sensors. Moreover, in alpine terrains, such as in the Himalayas, due to the geometrical distortions, the missing data is significant in the active microwave remote sensing data. In this paper, we present a methodology utilizing the multispectral observations of Sentinel-2 satellite for the estimation of surface snow wetness. The proposed approach is based on the popular triangle method which is significantly utilized for the assessment of soil moisture. In this case, we develop a triangular feature space using the near infrared (NIR) reflectance and the normalized differenced snow index (NDSI). Based on the assumption that the NIR reflectance is linearly related to the liquid water content in the snow, we derive a physical relationship for the estimation of snow wetness. The modeled estimates of snow wetness from the proposed approach were compared with in-situ measurements of surface snow wetness. A high correlation determined by the coefficient of determination of 0.94 and an error of 0.535 was observed between the proposed estimates of snow wetness and in-situ measurements.</p>


2021 ◽  
Author(s):  
Simon Jirka ◽  
Benedikt Gräler ◽  
Matthes Rieke ◽  
Christian Autermann

&lt;p&gt;For many scientific domains such as hydrology, ocean sciences, geophysics and social sciences, geospatial observations are an important source of information. Scientists conduct extensive measurement campaigns or operate comprehensive monitoring networks to collect data that helps to understand and to model current and past states of complex environment. The variety of data underpinning research stretches from in-situ observations to remote sensing data (e.g., from the European Copernicus programme) and contributes to rapidly increasing large volumes of geospatial data.&lt;/p&gt;&lt;p&gt;However, with the growing amount of available data, new challenges arise. Within our contribution, we will focus on two specific aspects: On the one hand, we will discuss the specific challenges which result from the large volumes of remote sensing data that have become available for answering scientific questions. For this purpose, we will share practical experiences with the use of cloud infrastructures such as the German platform CODE-DE and will discuss concepts that enable data processing close to the data stores. On the other hand, we will look into the question of interoperability in order to facilitate the integration and collaborative use of data from different sources. For this aspect, we will give special consideration to the currently emerging new generation of standards of the Open Geospatial Consortium (OGC) and will discuss how specifications such as the OGC API for Processes can help to provide flexible processing capabilities directly within Cloud-based research data infrastructures.&lt;/p&gt;


Fire ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 55 ◽  
Author(s):  
Alexander J. Schaefer ◽  
Brian I. Magi

For this study, we characterized the dependence of fire counts (FCs) on soil moisture (SM) at global and sub-global scales using 15 years of remote sensing data. We argue that this mathematical relationship serves as an effective way to predict fire because it is a proxy for the semi-quantitative fire–productivity relationship that describes the tradeoff between fuel availability and climate as constraints on fire activity. We partitioned the globe into land-use and land-cover (LULC) categories of forest, grass, cropland, and pasture to investigate how the fire–soil moisture (fire–SM) behavior varies as a function of LULC. We also partitioned the globe into four broadly defined biomes (Boreal, Grassland-Savanna, Temperate, and Tropical) to study the dependence of fire–SM behavior on LULC across those biomes. The forest and grass LULC fire–SM curves are qualitatively similar to the fire–productivity relationship with a peak in fire activity at intermediate SM, a steep decline in fire activity at low SM (productivity constraint), and gradual decline as SM increases (climate constraint), but our analysis highlights how forests and grasses differ across biomes as well. Pasture and cropland LULC are a distinctly human use of the landscape, and fires detected on those LULC types include intentional fires. Cropland fire–SM curves are similar to those for grass LULC, but pasture fires are evident at higher SM values than other LULC. This suggests a departure from the expected climate constraint when burning is happening at non-optimal flammability conditions. Using over a decade of remote sensing data, our results show that quantifying fires relative to a single physical climate variable (soil moisture) is possible on both cultivated and uncultivated landscapes. Linking fire to observable soil moisture conditions for different land-cover types has important applications in fire management and fire modeling.


2020 ◽  
Vol 13 (3) ◽  
pp. 1267-1284 ◽  
Author(s):  
Theo Baracchini ◽  
Philip Y. Chu ◽  
Jonas Šukys ◽  
Gian Lieberherr ◽  
Stefan Wunderle ◽  
...  

Abstract. The understanding of physical dynamics is crucial to provide scientifically credible information on lake ecosystem management. We show how the combination of in situ observations, remote sensing data, and three-dimensional hydrodynamic (3D) numerical simulations is capable of resolving various spatiotemporal scales involved in lake dynamics. This combination is achieved through data assimilation (DA) and uncertainty quantification. In this study, we develop a flexible framework by incorporating DA into 3D hydrodynamic lake models. Using an ensemble Kalman filter, our approach accounts for model and observational uncertainties. We demonstrate the framework by assimilating in situ and satellite remote sensing temperature data into a 3D hydrodynamic model of Lake Geneva. Results show that DA effectively improves model performance over a broad range of spatiotemporal scales and physical processes. Overall, temperature errors have been reduced by 54 %. With a localization scheme, an ensemble size of 20 members is found to be sufficient to derive covariance matrices leading to satisfactory results. The entire framework has been developed with the goal of near-real-time operational systems (e.g., integration into meteolakes.ch).


Author(s):  
Ram L. Ray ◽  
Maurizio Lazzari ◽  
Tolulope Olutimehin

Landslide is one of the costliest and fatal geological hazards, threatening and influencing the socioeconomic conditions in many countries globally. Remote sensing approaches are widely used in landslide studies. Landslide threats can also be investigated through slope stability model, susceptibility mapping, hazard assessment, risk analysis, and other methods. Although it is possible to conduct landslide studies using in-situ observation, it is time-consuming, expensive, and sometimes challenging to collect data at inaccessible terrains. Remote sensing data can be used in landslide monitoring, mapping, hazard prediction and assessment, and other investigations. The primary goal of this chapter is to review the existing remote sensing approaches and techniques used to study landslides and explore the possibilities of potential remote sensing tools that can effectively be used in landslide studies in the future. This chapter also provides critical and comprehensive reviews of landslide studies focus¬ing on the role played by remote sensing data and approaches in landslide hazard assessment. Further, the reviews discuss the application of remotely sensed products for landslide detection, mapping, prediction, and evaluation around the world. This systematic review may contribute to better understanding the extensive use of remotely sensed data and spatial analysis techniques to conduct landslide studies at a range of scales.


Sign in / Sign up

Export Citation Format

Share Document