foliar uptake
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 33)

H-INDEX

30
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Triratnesh Gajbhiye ◽  
Sudhir Kumar Pandey ◽  
Tanzil Gaffar Malik ◽  
Ki-Hyun Kim ◽  
Mohammed Latif Khan

Abstract While airborne particulate matter (PM) pollution is a serious problem for urban environments, it can be reduced through uptake by plant leaves. In this study, we investigated and compared the uptake of PM-bound toxic metals by different plant species. Enrichment factor (EF) and correlation analyses across different sample types indicated anthropogenic origins of these toxic metals with airborne source signatures. Scanning electron microscopy (SEM) analyses of both leaf surfaces (adaxial and abaxial) suggested that the micro-morphological properties of the leaf surface (e.g., stomata, trichomes, epicuticular wax, and epidermal appendages) control the accumulation of PM and associated metals in plant leaves. Senna siamea leaves showed the most micro-morphological variation as well as the maximum concentration of toxic metals. It was found that foliar uptake of PM-bound toxic metals is affected by leaf surface morphological characteristics. Our results imply that plant speciation strategies can be used to help decrease PM pollution.


2021 ◽  
pp. 118585
Author(s):  
Pei-Pei Gao ◽  
Xiao-Meng Zhang ◽  
Pei-Ying Xue ◽  
Jun-Wen Dong ◽  
Yan Dong ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Eunseok Seo ◽  
Seonghan Kim ◽  
Jiwon Park ◽  
Heejin Lim ◽  
Nami Ha ◽  
...  

Contamination of vegetables due to the foliar uptake of atmospheric toxic elements could pose severe health risks. However, the uptake mechanisms of potencially toxic elements (PTEs) from the atmosphere and translocation by plant leaves remain unclear. In this study, carboxylic acid-functionalized water-soluble CdSe/ZnS quantum dot nanoparticles (QD NPs) were used as an experimental particle model of PTEs in the edible plant garlic chive (Allium tuberosum). A droplet of QD NP suspension was deposited to simulate the conditions of raindrops containing metal particles falling on a plant leaf. The 3D spatial distribution of QD NPs in plant leaves was measured using three complementary imaging techniques: synchrotron X-ray microcomputed tomography (micro-CT), nano-CT, and two-photon microscopy (TPM). The TPM and micro-CT results revealed that QD NPs deposited on garlic chive leaves penetrated the plant leaves. Nano-CT images showed that QD NPs are absorbed into mesophyll cells and phloem vessels. The results of TEM and TPM imaging demonstrated that QD NPs penetrate through the leaves and translocate in the direction of the stem. The use of these emerging imaging techniques improved the ability to detect and visualize NPs in a plant leaf. These observations also provide mechanistic insights into foliar metal uptake and their translocation and accumulation.


2021 ◽  
Vol 416 ◽  
pp. 125854
Author(s):  
Haifeng Sun ◽  
Chunli Lei ◽  
Jianhong Xu ◽  
Ruilong Li
Keyword(s):  

Author(s):  
Astrid Avellan ◽  
Jie Yun ◽  
Bruno P. Morais ◽  
Emma T. Clement ◽  
Sonia M. Rodrigues ◽  
...  

2021 ◽  
Author(s):  
Avner Gross ◽  
Sudeep Tiwari ◽  
Ilana Shtein ◽  
Ran Erel
Keyword(s):  

2020 ◽  
Vol 17 (24) ◽  
pp. 6441-6456 ◽  
Author(s):  
Lena Wohlgemuth ◽  
Stefan Osterwalder ◽  
Carl Joseph ◽  
Ansgar Kahmen ◽  
Günter Hoch ◽  
...  

Abstract. The exchange of gaseous elemental mercury, Hg(0), between the atmosphere and terrestrial surfaces remains poorly understood mainly due to difficulties in measuring net Hg(0) fluxes on the ecosystem scale. Emerging evidence suggests foliar uptake of atmospheric Hg(0) to be a major deposition pathway to terrestrial surfaces. Here, we present a bottom-up approach to calculate Hg(0) uptake fluxes to aboveground foliage by combining foliar Hg uptake rates normalized to leaf area with species-specific leaf area indices. This bottom-up approach incorporates systematic variations in crown height and needle age. We analyzed Hg content in 583 foliage samples from six tree species at 10 European forested research sites along a latitudinal gradient from Switzerland to northern Finland over the course of the 2018 growing season. Foliar Hg concentrations increased over time in all six tree species at all sites. We found that foliar Hg uptake rates normalized to leaf area were highest at the top of the tree crown. Foliar Hg uptake rates decreased with needle age of multiyear-old conifers (spruce and pine). Average species-specific foliar Hg uptake fluxes during the 2018 growing season were 18 ± 3 µg Hg m−2 for beech, 26 ± 5 µg Hg m−2 for oak, 4 ± 1 µg Hg m−2 for pine and 11 ± 1 µg Hg m−2 for spruce. For comparison, the average Hg(II) wet deposition flux measured at 5 of the 10 research sites during the same period was 2.3 ± 0.3 µg Hg m−2, which was 4 times lower than the site-averaged foliar uptake flux of 10 ± 3 µg Hg m−2. Scaling up site-specific foliar uptake rates to the forested area of Europe resulted in a total foliar Hg uptake flux of approximately 20 ± 3 Mg during the 2018 growing season. Considering that the same flux applies to the global land area of temperate forests, we estimate a foliar Hg uptake flux of 108 ± 18 Mg. Our data indicate that foliar Hg uptake is a major deposition pathway to terrestrial surfaces in Europe. The bottom-up approach provides a promising method to quantify foliar Hg uptake fluxes on an ecosystem scale.


Sign in / Sign up

Export Citation Format

Share Document