scholarly journals 3D Integrated Structural, Facies and Petrophysical Static Modeling Approach for Complex Sandstone Reservoirs: A Case Study from the Coniacian–Santonian Matulla Formation, July Oilfield, Gulf of Suez, Egypt

Author(s):  
Ahmed M. Ali ◽  
Ahmed E. Radwan ◽  
Esam A. Abd El-Gawad ◽  
Abdel-Sattar A. Abdel-Latief

AbstractThe Coniacian–Santonian Matulla Formation is one of the important reservoirs in the July oilfield, Gulf of Suez Basin. However, this formation is characterized by uncertainty due to the complexity of reservoir architecture, various lithologies, lateral facies variations and heterogeneous reservoir quality. These reservoir challenges, in turn, affect the effectiveness of further exploitation of this reservoir along the Gulf of Suez Basin. In this work, we conduct an integrated study using multidisciplinary datasets and techniques to determine the precise structural, petrophysical, and facies characteristics of the Matulla Formation and predict their complex geometry in 3D space. To complete this study, 30 2D seismic sections, five digital well logs, and core samples of 75 ft (ft = 0.3048 m) length were used to build 3D models for the Matulla reservoir. The 3D structural model shows strong lateral variation in thickness of the Matulla Formation with NW–SE, NE–SW and N–S fault directions. According to the 3D facies model, shale beds dominate the Matulla Formation, followed by sandstone, carbonate, and siltstone beds. The petrophysical model demonstrates the Matulla reservoir's ability to store and produce oil; its upper and lower zones have good quality reservoir, whereas its middle zone is a poor quality reservoir. The most promising areas for hydrocarbon accumulation and production via the Matulla reservoir are located in the central, southeast, and southwest sectors of the oilfield. In this approach, we combined multiple datasets and used the most likely parameters calibrated by core measurements to improve the reservoir modeling of the complex Matulla reservoir. In addition, we reduced many of the common uncertainties associated with the static modeling process, which can be applied elsewhere to gain better understanding of a complex reservoir.

2021 ◽  
Vol 25 (3) ◽  
pp. 332-341
Author(s):  
I. V. Fokin ◽  
A. N. Smirnov

The aim was to create a mathematical model describing the development of a production (shop-to-shop) routing of mechanical engineering products based on a 3D model and allowing the cost of the final product to be reduced. The developed mathematical model was simulated based on 3D models designed in the Siemens NX system, which were subsequently imported into the *stp format and recognized by a designed module written in the Phyton programming language. The factors of the production environment affecting the formation of the production routing of mechanical engineering products were determined. A diagram of the algorithm for the “constructive element - technological operation - means of technological equipment (equipment-tool)” relationship was developed. Based on the results of testing the developed mathematical model, the use of neural networks as a tool for the implementation and automation of the work was found advantageous as compared to the standard scheme of work of a process engineer when developing a production routing of mechanical engineering products. These advantages include a decrease in the time for the development of a routing and the cost of the final product. The developed model has a practical limitation consisting in a rather complex geometry of some structural elements of a unit, which impedes the development of an algorithm for recognizing their structure. The use of a neural network prototype in automatic mode is advisable for relatively simple parts (including a flange, hole, chamfer and rounding). However, since the number of simple units from the recognition point of view amounts to about 40% among the nomenclature of manufactured units, the reduction in the development time of the technological process in comparison with the conventional approach comprises only 10–25% of the total time of technological preparation.


2021 ◽  
Author(s):  
Lucie Guillen ◽  
Séverine Caritg ◽  
Pierre Bourbon ◽  
Thomas Dewez ◽  
Clara Lévy ◽  
...  

<p>A 3D litho-structural model synthetizes a geological setting by defining 3D geometries of lithological layers considering stratigraphic relationships, weathering and tectonics. It combines quantitative and qualitative data from different dimensions and acquisition types (field measures and observations, geophysics, boreholes, DEM) into a single structured database. This aesthetic 3D representation enables to work on the same object, despite different sources of datasets, making it a highly useful integrative tool for various ways to monitor and analyze landslides prone areas.</p><p>This type of model is used on site scale for large phenomena, for a better understanding of their internal structure and to extract information to be included for failure numerical modelling. However, there are a very few examples of 3D geological models used for large areas subject to spatially limited events. Indeed, the transition from 2D to 3D information remains difficult, especially in case of sparse input data, reinforcing 3D interpretation uncertainties and decreasing the robustness of the model. Thus, most of regional scale geological 3D models used for landslides analyses are simplified and the different lithological layers used for susceptibility and hazard assessments suffer from uncertainties difficult to quantify.</p><p>The aim of this contribution is to show how two local scale 3D geological models can contribute and improve the robustness of a regional 3D geological model for the purpose of landslide susceptibility and hazard assessment. The local and regional 3D geological models integrate different data types of uneven quality by successive iterations, to interpret structural and lithological layers geometries with GeoModeller. This software is based on cokriging calculation method of orientation and location of geological interfaces and faults. The regional model will be compared to the local 3D models results, as references to assess regional model uncertainties. This iterative process enables to improve each 3D model with different data sets from one scale to another. Still, models results must be confirmed by field validation to reduce uncertainties as much as possible.</p><p>This study focuses on the 40 km long French Basque coast in the southwest of France, which presents complex faulting and geological heterogeneities inherited from the Pyrenean orogeny – these are relatively well mapped along the shore. Both of the local sites are different and characteristic of regional coastal geomorphological types and of specific lithological formations. These are made of flyschs, limestones and marls, the top of which are more or less weathered and capped by Quaternary detritic formations of variable thickness. This coast is subject to various types of shallow and moderately deep instabilities (slides, rockfalls and flows). By defining the geometry of lithology and faults, the 3D models results will enable to:</p><ul><li>Characterize how lithology and structures, as predisposition factors, influence landslides susceptibility to specific landslide types,</li> <li>Integrate lithological layers and structural discontinuities to physical-based models to assess landslide susceptibility and hazard on regional (1 : 25,000) and on local (1 : 2,500) scales,</li> <li>Improve the geological knowledge of the French Basque coast.</li> </ul>


2021 ◽  
Vol 6 (2(62)) ◽  
pp. 30-36
Author(s):  
Volodymyr Kvasnikov ◽  
Dmytro Ornatskyi ◽  
Valerii Dostavalov

The object of research is to refine the linear sizes of the obtained 3D models via scanning, and reducing the numbers of errors when obtaining the model. For now, there is no accuracy method for transferring the actual sizes of an object to a 3D model. One of the most problematic places in the existing methods of transferring sizes from the object to the model is the error in the placement of dimensional markers due to inaccuracy, or poor quality of the received surface via scanning. A model of the instrument complex is used to implement an improved method of 3D scanning, based on the photogrammetric method. The advanced technology of construction and measurement of 3D models on the basis of photos on the principle of stereo pairs in combination with image projection is based on a combination of existing scanning methods. As well as the introduction of new functionalities, such as maintaining the actual sizes of an object, its textures, color and light characteristics, as well as improving the accuracy of linear sizes. As a result of the use of a standard, reference projections, and a new method of comparing photographs to build a 3D model, a 60 % increase in the accuracy of linear dimensions was achieved. This is due to the fact that the proposed new combined method incorporates all the existing most important aspects of scanning. And also has a number of features, such as the definition of boundary surfaces, automatic sizing, detection, and processing of glass and mirror surfaces. Due to this, this method eliminates the main disadvantages of the usual photogrammetric method – inaccuracies in the surface quality of the models, and inaccuracies in the transfer of linear dimensions. It is estimated that the combined method will allow to transfer the real size of simple objects in 3D with an accuracy of 99.97 % of the actual size of the object. It will also improve the quality of complex surfaces (boundary, glass, mirror) by at least 40–60 %, compared to other existing methods.


2016 ◽  
Vol 2016 (1) ◽  
pp. 89-99
Author(s):  
Виктор Тихомиров ◽  
Viktor Tikhomirov ◽  
Михаил Измеров ◽  
Mikhail Izmerov

A contact of machinery real engineering surfaces has a complex geometry and is defined by errors at machining, in particular, by macrodeviations, corrugation and roughness. This paper report the consideration carried out on a fluid consumption through an end axisymmetric sealing arrangement formed by a joint of metal surfaces. Sealed environment consumption is defined through a sum of leaks through a slit between surfaces conditioned on corrugation and dripping through a porous layer farmed by surface roughness on contact contour spots. The surface corrugation is modeled by splines according to initial parameters of a corrugation, and as a roughness a surface fractal model is used repeating a real roughness most accurate. On algorithms presented taking into account basic parameters of corrugation and roughness the 3D models of engineering surfaces are created and after their bringing in contact arises a possibility to obtain practically all parameters of contacting defining the impermeability of a sealing arrangement. The application of 3D models allows rendering processes passing in a contact of conjugate surfaces and obtaining some data, for instance, a tortuosity of leaking channels which earlier were chosen according to recommendations which no doubt increases computation accuracy.


GeoArabia ◽  
1999 ◽  
Vol 4 (3) ◽  
pp. 363-378
Author(s):  
Mohammed A. Badri ◽  
Taha M. Taha ◽  
Robert W. Wiley

ABSTRACT In 1995 oil was discovered in the pre-Miocene Matulla and Nubia Sandstones in the Ras El Ush field, Gulf of Suez, Egypt. The discovery was based on an aeromagnetic anomaly from a basement high. After drilling several delineation wells, based on a geological model, it became evident that the field is very complex as it is broken into tilted and rotated compartmental blocks by two perpendicular fault systems. Also the 2-D seismic data were of poor quality beneath the thick Miocene South Gharib Evaporite. Since part of the field lies below shallow-water, 3-D seismic was considered to be too costly. When a delineation well did not encounter the reservoir, due to an unanticipated fault, a 2-D walkaway Vertical Seismic Profile (VSP) was acquired. It clearly revealed the presence of a cross fault. The success of the 2-D VSP in imaging the fault led to the acquisition of the first Middle East 3-D VSP survey in the following well. A downhole, tri-axial, five geophone array tool was used to acquire the 3-D VSP. The 3-D volume of the final migrated VSP data provided the means for the reliable mapping of horizons beneath the South Gharib Evaporite. These maps improved the definition of the field and helped detect previously unrecognized prospective blocks. Four further successful delineation wells confirmed the 3-D VSP interpretation.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1441 ◽  
Author(s):  
Tim Collins ◽  
Sandra I. Woolley ◽  
Erlend Gehlken ◽  
Eugene Ch’ng

The photogrammetric acquisition of 3D object models can be achieved by Structure from Motion (SfM) computation of photographs taken from multiple viewpoints. All-around 3D models of small artefacts with complex geometry can be difficult to acquire photogrammetrically and the precision of the acquired models can be diminished by the generic application of automated photogrammetric workflows. In this paper, we present two versions of a complete rotary photogrammetric system and an automated workflow for all-around, precise, reliable and low-cost acquisitions of large numbers of small artefacts, together with consideration of the visual quality of the model textures. The acquisition systems comprise a turntable and (i) a computer and digital camera or (ii) a smartphone designed to be ultra-low cost (less than $150). Experimental results are presented which demonstrate an acquisition precision of less than 40 μ m using a 12.2 Megapixel digital camera and less than 80 μ m using an 8 Megapixel smartphone. The novel contribution of this work centres on the design of an automated solution that achieves high-precision, photographically textured 3D acquisitions at a fraction of the cost of currently available systems. This could significantly benefit the digitisation efforts of collectors, curators and archaeologists as well as the wider population.


2019 ◽  
Vol 110 ◽  
pp. 02166 ◽  
Author(s):  
Angela Mottaeva

The relevance of the research subject is dictated by the poor quality of management at all the levels of the system of housing-and-communal services in Russia, insufficient study of the specifics of management of the industry, and also by the need of the development of ways of the increase in management efficiency for the purpose of providing its development according to the requirements of the green economy. The mechanism and structural model of management of housing-and-communal services were developed. It will allow increasing the management quality in the organizations of housing-and-communal services in the context of its sustainable development, structural dynamics, features of manifestation of interrelations of its elements, and also to resolve some contradictions. Such contradictions exist among the purposes of the state (development of the competition in the market of housing-and-communal services), purposes of commercial organization (making maximum profit), and purposes of population (receiving high-quality and cheap services). Moreover, the contradictions exist among the economical purposes, social interests and environmental priorities. The results of the research can be useful for the improvement of management in the housing-and-communal sphere according to the principles of green economy.


Sign in / Sign up

Export Citation Format

Share Document