scholarly journals In vivo calcium imaging of CA3 pyramidal neuron populations in adult mouse hippocampus

eNeuro ◽  
2021 ◽  
pp. ENEURO.0023-21.2021
Author(s):  
Gwendolin Schoenfeld ◽  
Stefano Carta ◽  
Peter Rupprecht ◽  
Asli Ayaz ◽  
Fritjof Helmchen
2020 ◽  
Vol 32 (6) ◽  
pp. 1144-1167
Author(s):  
Mengyu Tu ◽  
Ruohe Zhao ◽  
Avital Adler ◽  
Wen-Biao Gan ◽  
Zhe S. Chen

Large-scale fluorescence calcium imaging methods have become widely adopted for studies of long-term hippocampal and cortical neuronal dynamics. Pyramidal neurons of the rodent hippocampus show spatial tuning in freely foraging or head-fixed navigation tasks. Development of efficient neural decoding methods for reconstructing the animal's position in real or virtual environments can provide a fast readout of spatial representations in closed-loop neuroscience experiments. Here, we develop an efficient strategy to extract features from fluorescence calcium imaging traces and further decode the animal's position. We validate our spike inference-free decoding methods in multiple in vivo calcium imaging recordings of the mouse hippocampus based on both supervised and unsupervised decoding analyses. We systematically investigate the decoding performance of our proposed methods with respect to the number of neurons, imaging frame rate, and signal-to-noise ratio. Our proposed supervised decoding analysis is ultrafast and robust, and thereby appealing for real-time position decoding applications based on calcium imaging.


2018 ◽  
Author(s):  
Gal Mishne ◽  
Ronald R. Coifman ◽  
Maria Lavzin ◽  
Jackie Schiller

AbstractRecent advances in experimental methods in neuroscience enable measuring in-vivo activity of large populations of neurons at cellular level resolution. To leverage the full potential of these complex datasets and analyze the dynamics of individual neurons, it is essential to extract high-resolution regions of interest, while addressing demixing of overlapping spatial components and denoising of the temporal signal of each neuron. In this paper, we propose a data-driven solution to these challenges, by representing the spatiotemporal volume as a graph in the image plane. Based on the spectral embedding of this graph calculated across trials, we propose a new clustering method, Local Selective Spectral Clustering, capable of handling overlapping clusters and disregarding clutter. We also present a new nonlinear mapping which recovers the structural map of the neurons and dendrites, and global video denoising. We demonstrate our approach on in-vivo calcium imaging of neurons and apical dendrites, automatically extracting complex structures in the image domain, and denoising and demixing their time-traces.


2018 ◽  
Vol 84 (1) ◽  
pp. e51 ◽  
Author(s):  
Alexander D. Jacob ◽  
Adam I. Ramsaran ◽  
Andrew J. Mocle ◽  
Lina M. Tran ◽  
Chen Yan ◽  
...  

2022 ◽  
Vol 225 (1) ◽  
Author(s):  
Madeleine S. Junkins ◽  
Sviatoslav N. Bagriantsev ◽  
Elena O. Gracheva

ABSTRACT Hibernators thrive under harsh environmental conditions instead of initiating canonical behavioral and physiological responses to promote survival. Although the physiological changes that occur during hibernation have been comprehensively researched, the role of the nervous system in this process remains relatively underexplored. In this Review, we adopt the perspective that the nervous system plays an active, essential role in facilitating and supporting hibernation. Accumulating evidence strongly suggests that the hypothalamus enters a quiescent state in which powerful drives to thermoregulate, eat and drink are suppressed. Similarly, cardiovascular and pulmonary reflexes originating in the brainstem are altered to permit the profoundly slow heart and breathing rates observed during torpor. The mechanisms underlying these changes to the hypothalamus and brainstem are not currently known, but several neuromodulatory systems have been implicated in the induction and maintenance of hibernation. The intersection of these findings with modern neuroscience approaches, such as optogenetics and in vivo calcium imaging, has opened several exciting avenues for hibernation research.


2019 ◽  
Vol 11 (522) ◽  
pp. eaaw6435 ◽  
Author(s):  
Boris D. Heifets ◽  
Juliana S. Salgado ◽  
Madison D. Taylor ◽  
Paul Hoerbelt ◽  
Daniel F. Cardozo Pinto ◽  
...  

The extensively abused recreational drug (±)3,4-methylenedioxymethamphetamine (MDMA) has shown promise as an adjunct to psychotherapy for treatment-resistant psychiatric disease. It is unknown, however, whether the mechanisms underlying its prosocial therapeutic effects and abuse potential are distinct. We modeled both the prosocial and nonsocial drug reward of MDMA in mice and investigated the mechanism of these processes using brain region–specific pharmacology, transgenic manipulations, electrophysiology, and in vivo calcium imaging. We demonstrate in mice that MDMA acting at the serotonin transporter within the nucleus accumbens is necessary and sufficient for MDMA’s prosocial effect. MDMA’s acute rewarding properties, in contrast, require dopaminergic signaling. MDMA’s prosocial effect requires 5-HT1b receptor activation and is mimicked by d-fenfluramine, a selective serotonin-releasing compound. By dissociating the mechanisms of MDMA’s prosocial effects from its addictive properties, we provide evidence for a conserved neuronal pathway, which can be leveraged to develop novel therapeutics with limited abuse liability.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A2-A2
Author(s):  
C E Mahoney ◽  
W Zhao ◽  
A Coffey ◽  
C Woods ◽  
D Kroeger ◽  
...  

Abstract Introduction People with narcolepsy type 1 report that cataplexy is triggered most often by positive social experiences such as laughing with friends, yet the mechanisms through which social interaction promotes cataplexy are unknown. We hypothesize a subpopulation of central amygdala neurons that are sensitive to the prosocial neuropeptide, oxytocin (CeAOTR), respond to positive valence and trigger cataplexy. Methods We have used in vivo calcium imaging, chemogenetic and optogenetic approaches to characterize the activity pattern of these neurons and to manipulate their activity state. Results Cre-dependent anterograde tracing of the CeAOTR neurons of the central amygdala indicate a moderate to dense projection to the REM sleep-regulatory region of the ventral lateral periaqueductal gray (vlPAG). Additionally, Channel Rhodopsin Assisted Circuit Mapping (CRACM) experiments show that CeAOTR neurons inhibit vlPAG neurons that innervate the REM atonia-promoting region, the sublaterodorsal nucleus. Targeted photostimulation (15Hz (10ms) for 20sec every hour) of the CeAOTR fibers in the vlPAG doubled the amount of cataplexy. Preliminary in vivo calcium imaging indicates that the CeAOTR are active just prior to the onset of cataplexy. Chemogenetic and optogenetic activation of CeAOTR neurons increased cataplexy. Conclusion We conclude that the CeAOTR subpopulation is sufficient to promote cataplexy. Our future directions include determining the necessity of these oxytocin sensitive neurons in cataplexy under different conditions of positive valence. Support R01 NS106032 and WakeUp Narcolepsy.


Science ◽  
2018 ◽  
Vol 359 (6376) ◽  
pp. 658-662 ◽  
Author(s):  
Gregor-Alexander Pilz ◽  
Sara Bottes ◽  
Marion Betizeau ◽  
David J. Jörg ◽  
Stefano Carta ◽  
...  

Neural stem and progenitor cells (NSPCs) generate neurons throughout life in the mammalian hippocampus. We used chronic in vivo imaging and followed genetically labeled individual NSPCs and their progeny in the mouse hippocampus for up to 2 months. We show that NSPCs targeted by the endogenous Achaete-scute homolog 1 (Ascl1) promoter undergo limited rounds of symmetric and asymmetric divisions, eliciting a burst of neurogenic activity, after which they are lost. Further, our data reveal unexpected asymmetric divisions of nonradial glia-like NSPCs. Cell fates of Ascl1-labeled lineages suggest a developmental-like program involving a sequential transition from a proliferative to a neurogenic phase. By providing a comprehensive description of lineage relationships, from dividing NSPCs to newborn neurons integrating into the hippocampal circuitry, our data offer insight into how NSPCs support life-long hippocampal neurogenesis.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Marco Bocchio ◽  
Claire Gouny ◽  
David Angulo-Garcia ◽  
Tom Toulat ◽  
Thomas Tressard ◽  
...  

Abstract The temporal embryonic origins of cortical GABA neurons are critical for their specialization. In the neonatal hippocampus, GABA cells born the earliest (ebGABAs) operate as ‘hubs’ by orchestrating population synchrony. However, their adult fate remains largely unknown. To fill this gap, we have examined CA1 ebGABAs using a combination of electrophysiology, neurochemical analysis, optogenetic connectivity mapping as well as ex vivo and in vivo calcium imaging. We show that CA1 ebGABAs not only operate as hubs during development, but also maintain distinct morpho-physiological and connectivity profiles, including a bias for long-range targets and local excitatory inputs. In vivo, ebGABAs are activated during locomotion, correlate with CA1 cell assemblies and display high functional connectivity. Hence, ebGABAs are specified from birth to ensure unique functions throughout their lifetime. In the adult brain, this may take the form of a long-range hub role through the coordination of cell assemblies across distant regions.


Sign in / Sign up

Export Citation Format

Share Document