scholarly journals Catastrophic Interference in Predictive Neural Network Models of Distributional Semantics

Author(s):  
Willa M. Mannering ◽  
Michael N. Jones
2020 ◽  
Author(s):  
Willa Mannering ◽  
Michael N. Jones

The semantic memory literature has recently seen the emergence of predictive neural network models that use principles of reinforcement learning to create a “neural embedding” of word meaning when trained on a language corpus. These models have taken the field by storm, partially due to the resurgence of connectionist architectures, but also due to their remarkable success at fitting human data. However, predictive embedding models also inherit the weaknesses of their ancestors. In this paper, we explore the effect of catastrophic interference (CI), long known to be a flaw with neural network models, on a modern neural embedding model of semantic representation (word2vec). We use homonyms as an index of bias as a function of the order in which a corpus is learned. If the corpus is learned in random order, the final representation will tend towards the dominant sense of the word (bank > money) as opposed to the subordinate sense (bank > river). However, if the subordinate sense is presented to the network after learning the dominant sense, CI almost completely erases the dominant sense and the final representation strongly tends towards the more recent subordinate sense. We demonstrate the impact of CI and sequence of learning on the final neural embeddings learned by word2vec in both an artificial language and in an English corpus and evaluate the effectiveness of a recently proposed solution to CI from neuroscience, elastic weight consolidation, on mitigating the effects of CI.


2020 ◽  
Vol 5 ◽  
pp. 140-147 ◽  
Author(s):  
T.N. Aleksandrova ◽  
◽  
E.K. Ushakov ◽  
A.V. Orlova ◽  
◽  
...  

The neural network models series used in the development of an aggregated digital twin of equipment as a cyber-physical system are presented. The twins of machining accuracy, chip formation and tool wear are examined in detail. On their basis, systems for stabilization of the chip formation process during cutting and diagnose of the cutting too wear are developed. Keywords cyberphysical system; neural network model of equipment; big data, digital twin of the chip formation; digital twin of the tool wear; digital twin of nanostructured coating choice


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4242
Author(s):  
Fausto Valencia ◽  
Hugo Arcos ◽  
Franklin Quilumba

The purpose of this research is the evaluation of artificial neural network models in the prediction of stresses in a 400 MVA power transformer winding conductor caused by the circulation of fault currents. The models were compared considering the training, validation, and test data errors’ behavior. Different combinations of hyperparameters were analyzed based on the variation of architectures, optimizers, and activation functions. The data for the process was created from finite element simulations performed in the FEMM software. The design of the Artificial Neural Network was performed using the Keras framework. As a result, a model with one hidden layer was the best suited architecture for the problem at hand, with the optimizer Adam and the activation function ReLU. The final Artificial Neural Network model predictions were compared with the Finite Element Method results, showing good agreement but with a much shorter solution time.


2021 ◽  
Vol 11 (3) ◽  
pp. 908
Author(s):  
Jie Zeng ◽  
Panagiotis G. Asteris ◽  
Anna P. Mamou ◽  
Ahmed Salih Mohammed ◽  
Emmanuil A. Golias ◽  
...  

Buried pipes are extensively used for oil transportation from offshore platforms. Under unfavorable loading combinations, the pipe’s uplift resistance may be exceeded, which may result in excessive deformations and significant disruptions. This paper presents findings from a series of small-scale tests performed on pipes buried in geogrid-reinforced sands, with the measured peak uplift resistance being used to calibrate advanced numerical models employing neural networks. Multilayer perceptron (MLP) and Radial Basis Function (RBF) primary structure types have been used to train two neural network models, which were then further developed using bagging and boosting ensemble techniques. Correlation coefficients in excess of 0.954 between the measured and predicted peak uplift resistance have been achieved. The results show that the design of pipelines can be significantly improved using the proposed novel, reliable and robust soft computing models.


Sign in / Sign up

Export Citation Format

Share Document