button mushroom
Recently Published Documents


TOTAL DOCUMENTS

372
(FIVE YEARS 119)

H-INDEX

30
(FIVE YEARS 6)

LWT ◽  
2022 ◽  
Vol 155 ◽  
pp. 112894
Author(s):  
Hossein Mirzaei-Baktash ◽  
Nasser Hamdami ◽  
Payam Torabi ◽  
Saideh Fallah-Joshaqani ◽  
Mohsen Dalvi-Isfahan

2021 ◽  
Vol 12 (6) ◽  
pp. 751-758
Author(s):  
Nishi Keshari ◽  
◽  
R. S. Kanwar ◽  

In this study, the predation behaviour of male and female predatory nematode, Fictor composticola, was studied on five prey nematode species, Aphelenchus avenae, Aphelenchoides swarupi, Ditylenchus myceliophagus, Bursilla sp. and Panagrolaimus sp., found in the white button mushroom compost. The period of the study is of six months. The data recorded on number of encounters, part of the body of prey attacked, stage of the prey attacked, duration of feeding etc. The strike rate and prey susceptibility were calculated. The average number of encounters on all the five preys done by female F. composticola was 3.0 and that of the male was 6.0. Male F. composticola had more number of encounters on the prey nematode species than the females. Both the sexes preferred juvenile stages over adults as prey. The most attacked part by both females and males predator, was the posterior part of the prey body. In 80% of cases, female predators fed on the first encountered prey while males attacked the first encountered prey in 30% of cases only. The strike rate of female F. composticola was more (78.6%) than the male (48.2%). Mycophagous nematodes were more susceptible to predator’s attack than the microbivorous nematodes. The strike rate of the predator on different prey nematode species was found more on mycophagous nematodes than on microbivorous nematodes and minimum on Panagrolaimus sp. The average feeding duration of female F. composticola was 8 min and 31 sec and in the case of males it was 4 min and 11 sec.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2434
Author(s):  
Henrietta Allaga ◽  
Anuar Zhumakayev ◽  
Rita Büchner ◽  
Sándor Kocsubé ◽  
Attila Szűcs ◽  
...  

Previously, severe green mould infections could be attributed mainly to Trichoderma aggressivum Samuels & W. Gams, as well as T. pleuroti S.H. Yu & M.S. Park and T. pleuroticola S.H. Yu & M.S. Park in the case of Agaricus bisporus (J.E. Lange) Imbach (button mushroom) and Pleurotus ostreatus (Jacq.) P. Kumm. (oyster mushroom), respectively. The purpose of our study was the examination of green mould agents deriving from the growing facilities of button mushroom, oyster mushroom and shiitake (Lentinula edodes (Berk.) Pegler) located in various countries of Europe, and initially classified into the Trichoderma harzianum Rifai species complex (THSC). Species identification was carried out using the multilocus sequence typing analysis of the internal transcribed spacer regions, as well as translation elongation factor 1-alpha, calmodulin and RNA polymerase B subunit II gene sequences. In vitro confrontation assays were applied to test the aggressiveness of the isolates towards mushrooms, while the effect of commercial fungicides on the growth of the strains was examined by the macrodilution method. Six Trichoderma species, namely T. afroharzianum P. Chaverri, F.B. Rocha, Degenkolb & Druzhin., T. atrobrunneum F.B. Rocha, P. Chaverri & Jaklitsch, T. guizhouense Q.R. Li, McKenzie & Yong Wang, T. harzianum sensu stricto, T. pollinicola F. Liu & L. Cai and T. simmonsii P. Chaverri, F.B. Rocha, Samuels, Degenkolb & Jaklitsch were detected in the different samples, with T. harzianum, T. pollinicola and T. simmonsii being the most aggressive. Prochloraz was found to have strong in vitro inhibitory effect on mycelial growth on most strains, however, T. simmonsii isolates showed remarkable tolerance to it. Our data suggest that T. harzianum and T. simmonsii may also be considered as potential causal agents of mushroom green mould.


2021 ◽  
Vol 924 (1) ◽  
pp. 012054
Author(s):  
A Ihwah ◽  
A L Rucitra ◽  
A D P Citraresmi ◽  
M A Jemal ◽  
S A Ayyubi

Abstract Indonesia is one of the countries with an extraordinary natural wealth of plants, one of which is mushroom plants. Button mushroom is one type of mushroom that most people favour. PT. S is a company that produces button mushroom products. The company performs demand forecasting using qualitative methods to fulfil consumer demand, benefiting production, raw material, and planting planning. This research aimed to compare the result of demand forecasting for 2021 by the company and demand forecasting using the ARIMA method as quantitative forecasting. The best ARIMA model was ARIMA (1,1,1) with a p-value of 0.000 and an MSE of 1.32. The results of demand forecasting using the ARIMA method were closer to the actual data than that of by the company. The total actual sales data from January – April 2021 is 150,958 kg. The difference between the total actual sales data and demand forecasting using the qualitative method is 2,277 kg, meanwhile, the difference between the total actual sales data and demand forecasting using the ARIMA method is 596 kg.


2021 ◽  
Vol 288 ◽  
pp. 110385
Author(s):  
Xiaochen Qian ◽  
Quan Hou ◽  
Jianing Liu ◽  
Qihui Huang ◽  
Zhenliang Jin ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Mozhde Hamidizade ◽  
Seied Mohsen Taghavi ◽  
Hamzeh Mafakheri ◽  
Rachel A Herschlag ◽  
Samuel Martins ◽  
...  

In autumn 2018, cap discoloration and browning symptoms (up to 20% incidence) were observed on commercially grown white button mushrooms (Agaricus bisporus) in two distinct farms located in Shiraz and Marvdasht Counties in Southern Iran. Symptomatic caps (13 and six caps from Shiraz and Marvdasht Counties, respectively) were characterized by visible brown discoloration with no blotch symptoms, bacterial sticky mass and cap wilting. Isolation of bacterial strains from infected cap tissues was performed on yeast-extract peptone glucose agar (YPGA) according to Hamidizade et al. (2020). The resulted bacterial colonies were oyster-white in color, non-fluorescent, domed convex circular with smooth margins 1-2 mm in diameter. A total of six bacterial strains (Shiraz: Ir1002, Ir1003, Ir1004, Ir1005, Ir1007 and Marvdasht: Ir1027) were isolated from distinct mushroom samples. Standard biochemical and phenotypic analyses (Schaad et al. 2001) showed that the bacterial strains were Gram and oxidase negative, catalase positive and facultatively anaerobic, while no capsule or endospore was observed. All strains were positive in urease production, arginine dihydrolase, hydrolysis of tween 80, and utilization of sucrose and D-sorbitol, while they were negative in amylase, cellulose, lecithinase, pectinase, and protease production as well as casein hydrolysis. Based on these phenotypic characteristics, the strains were supposed to be members of Enterobacteriaceae. They also did not induce hypersensitive reaction (HR) on tobacco (Nicotiana tabacum cv. Turkish) leaves nor did they produce tolaasin when streaked side-by-side with “Pseudomonas reactans” strains on King B medium (Osdaghi et al. 2019). Pathogenicity of the strains was evaluated (repeated twice) on fresh caps of white button mushroom using cut-cap method (Hamidizade et al. 2020). Reference strains of Pseudomonas tolaasii (CFBP 8707) and Mycetocola spp. (CFBP 8708) were used as positive controls, while sterile distilled water was used as a negative control. Brown discoloration appeared 24-36 hours post inoculation on cap surfaces while control caps remained asymptomatic. Koch’s postulates were accomplished by re-isolation and identification of bacterial strains from the symptomatic caps using colony morphology and Gram staining. For molecular identification, all initial as well as re-isolated strains were subjected to amplification and sequencing of 16S rDNA and gyrB (Yamamoto and Harayama 1995; Hamidizade et al. 2020). Obtained nucleotide sequences were deposited into NCBI GenBank (16S: MZ298620 to MZ298625; gyrB: MZ313184 to MZ313189). BLAST search using the 16S rDNA and gyrB sequences showed that the strains isolated in this study had 97-99% sequence similarity to the reference strains of Cedecea neteri. Phylogenetic analyses also confirmed close relationship of bacterial strains from this study to C. neteri strains. Pure cultures of representative strains Ir1004 (CFBP 8900) and Ir1027 (CFBP 8896) are deposited in CIRM-CFBP culture collection. This is the first report of C. neteri causing brown spot disease on button mushroom in Iran, while the bacterium has previously been reported to cause soft rot on Pholiota nameko (Yan et al. 2018), and yellow sticky disease on Flammulina velutipes (Yan et al. 2019) in China. Further comprehensive investigations will shed a light on the economic impact of the brown spot disease on mushroom industry in Iran.


2021 ◽  
Vol 28 (3) ◽  
pp. 411-427
Author(s):  
Romuald Górski ◽  
Hanna Dorna ◽  
Agnieszka Rosińska ◽  
Dorota Szopińska ◽  
Alina Kałużewicz

Abstract The aim of the studies was to investigate the effect of camel grass, lavender, patchouli, peppermint and tea tree essential oils, and their mixtures on the in vitro growth of pathogenic fungi Cladobotryum dendroides and Mycogone perniciosa, occurring in the cultivation of button mushroom (Agaricus bisporus). The mycelial growth of the tested pathogens was evaluated on PDA medium. Essential oils were added in three doses: 0.25; 0.5 and 1 mg·cm–3 of PDA medium. Camel grass and peppermint essential oils applied at the highest dose inhibited completely the in vitro growth of C. dendroides mycelium. Lavender oil used at the amount of 1 mg·cm–3 reduced the growth of the pathogen by 90 %. In the case of M. perniciosa the complete inhibition of the pathogen’s growth was observed after the addition of camel grass oil to PDA medium, irrespective of a dose, and lavender oil at the doses of 0.5 and 1 mg·cm–3. The efficacy of the tested mixtures against M. perniciosa was high. Generally, all mixtures of essential oils, irrespective of a dose, completely controlled the growth of the pathogen. The complete inhibition of the growth of C. dendroides was observed only on the medium with the addition of the mixture of camel grass and peppermint oils at the highest dose. The conducted research showed that natural essential oils due to their antifungal properties could be useful in the Integrated Disease Management for the protection of button mushroom against diseases. They could be an effective alternative to synthetic chemical fungicides.


Sign in / Sign up

Export Citation Format

Share Document