boronate esters
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 43)

H-INDEX

28
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Kazuki Matsuo ◽  
Eiji Yamaguchi ◽  
Akichika Itoh

This study investigates the photo-induced C–X borylation reaction of aryl halides by forming a halogen-bonding complex. The method employs 2-naphthol as a halogen-bonding acceptor and proceeds under mild conditions without a photoredox catalyst under 420 nm blue light irradiation. The method is highly chemoselective, broadly functional group tolerant, and provides concise access to corresponding boronate esters. Mechanistic studies reveal that forming the halogen-bonding complex between aryl halide and naphthol acts as an electron donor-acceptor complex to furnish aryl radicals through photo-induced electron transfer.


Author(s):  
Jia-Xue Wu ◽  
Qing-Xia Yao ◽  
Wen-zeng Duan ◽  
DaCheng Li ◽  
Xianqiang Huang ◽  
...  

Herein, an efficient strategy to aryl-heteroaryl formation via RhIII-catalyzed ortho-C(sp2)−H heteroarylation of (hetero)arenes with heterocyclic boronates using a readily removable N-2,6-difluorophenyl arylamides directing group has been disclosed. A variety of...


2021 ◽  
Author(s):  
Xiaolei Li ◽  
Jicheng Wu ◽  
Weiping Tang

Human glycans are primarily composed of nine common sugar building blocks. On the other hand, several hundred monosaccharides have been discovered in bacteria and most of them are not readily available. The ability to access these rare sugars and the corresponding glycocon-jugates can facilitate the studies of various fundamentally important biological processes in bacteria, including interactions between microbiota and the human host. Many rare sugars also exist in a variety of natural products and pharmaceutical reagents with significant biological activi-ties. Although methods have been developed for the synthesis of rare monosaccharides, most of them involve lengthy steps. Herein we report an efficient and general strategy that can provide access to rare sugars from commercially available common monosaccharides via a one-step Ru(II)-catalyzed and boron-mediated selective epimerization of 1,2-trans-diols to 1,2-cis-diols. The formation of boronate esters drives the equilibrium towards 1,2-cis-diol products, which can be immediately used for further selective functionalization and glycosylation. The utility of this strategy was demonstrated by the efficient construction of glycoside skeletons in natural products or bioactive compounds.


2021 ◽  
Author(s):  
David Barsoum ◽  
Julia Kalow

The transesterification of boronate esters with diols is tunable over at least 14 orders of magnitude. Rate acceleration is achieved by internal base catalysis, which lowers the barrier for the proton transfer step. Here we report a photoswitchable internal catalyst that tunes the rate of boronic ester/diol exchange over at least 4 orders of magnitude. We employed an acylhydrazone molecular photoswitch, which forms a thermally stable but photoreversible intramolecular H-bond, to gate the activity of the internal base catalyst in 8-quinoline boronic esters. The photoswitch can be cycled repeatedly, with high photostationary states. The intramolecular H-bond is found to be essential to the design of this photoswitchable internal catalyst, as protonating the quinoline with external sources of acid has little effect on the exchange rate.


2021 ◽  
Vol 14 (9) ◽  
pp. 833
Author(s):  
Sandip S. Shinde ◽  
Kim-Viktoria Bolik ◽  
Simone Maschauer ◽  
Olaf Prante

The 18F syntheses of tracers for positron emission tomography (PET) typically require several steps, including extraction of [18F]fluoride from H2[18O]O, elution, and drying, prior to nucleophilic substitution reaction, being a laborious and time-consuming process. The elution of [18F]fluoride is commonly achieved by phase transfer catalysts (PTC) in aqueous solution, which makes azeotropic drying indispensable. The ideal PTC is characterized by a slightly basic nature, its capacity to elute [18F]fluoride with anhydrous solvents, and its efficient complex formation with [18F]fluoride during subsequent labeling. Herein, we developed tri-(tert-butanol)-methylammonium iodide (TBMA-I), a quaternary ammonium salt serving as the PTC for 18F-fluorination reactions. The favorable elution efficiency of [18F]fluoride using TBMA-I was demonstrated with aprotic and protic solvents, maintaining high 18F-recoveries of 96–99%. 18F-labeling reactions using TBMA-I as PTC were studied with aliphatic 1,3-ditosylpropane and aryl pinacol boronate esters as precursors, providing 18F-labeled products in moderate-to-high radiochemical yields. TBMA-I revealed adequate properties for application to 18F-fluorination reactions and could be used for elution of [18F]fluoride with MeOH, omitting an additional base and azeotropic drying prior to 18F-labeling. We speculate that the tert-alcohol functionality of TBMA-I promotes intermolecular hydrogen bonding, which enhances the elution efficiency and stability of [18F]fluoride during nucleophilic 18F-fluorination.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4107
Author(s):  
Miłosz Frydrych ◽  
Daria Pakuła ◽  
Bogna Sztorch ◽  
Dariusz Brząkalski ◽  
Robert E. Przekop ◽  
...  

The functionalization of mono- and octahydrospherosilicate with vinylboranes and allylboranes via hydrosilylation reaction in the presence of a Karstedt’s platinum (0) catalyst is presented. This is the catalytic route to obtain a new class of silsesquioxanes containing boron atoms in their structure in high yields (>90%) and with satisfactory selectivity. The obtained compounds were fully characterized by spectroscopic (1H, 13C, 29Si NMR) and spectrometric methods (MALDI-TOF-MS), as well as thermal analysis (TGA). The obtained compounds were subjected to thermal tests, characterizing the processes of melting, thermal evaporation, sublimation and thermal decomposition.


2021 ◽  
pp. 857-863
Author(s):  
Lindsay L. Robinson ◽  
Jeffrey L. Self ◽  
Alexander D. Fusi ◽  
Morgan W. Bates ◽  
Javier Read de Alaniz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document