scholarly journals Stability of the homogeneous steady state for a model of a confined quasi-two-dimensional granular fluid

2021 ◽  
Vol 249 ◽  
pp. 04005
Author(s):  
Vicente Garzó ◽  
Ricardo Brito ◽  
Rodrigo Soto

A linear stability analysis of the hydrodynamic equations of a model for confined quasi-two-dimensional granular gases is carried out. The stability analysis is performed around the homogeneous steady state (HSS) reached eventually by the system after a transient regime. In contrast to previous studies (which considered dilute or quasielastic systems), our analysis is based on the results obtained from the inelastic Enskog kinetic equation, which takes into account the (nonlinear) dependence of the transport coefficients and the cooling rate on dissipation and applies to moderate densities. As in earlier studies, the analysis shows that the HSS is linearly stable with respect to long enough wavelength excitations.

2021 ◽  
Vol 11 (4) ◽  
pp. 1395
Author(s):  
Abdelali El Aroudi ◽  
Natalia Cañas-Estrada ◽  
Mohamed Debbat ◽  
Mohamed Al-Numay

This paper presents a study of the nonlinear dynamic behavior a flying capacitor four-level three-cell DC-DC buck converter. Its stability analysis is performed and its stability boundaries is determined in the multi-dimensional paramertic space. First, the switched model of the converter is presented. Then, a discrete-time controller for the converter is proposed. The controller is is responsible for both balancing the flying capacitor voltages from one hand and for output current regulation. Simulation results from the switched model of the converter under the proposed controller are presented. The results show that the system may undergo bifurcation phenomena and period doubling route to chaos when some system parameters are varied. One-dimensional bifurcation diagrams are computed and used to explore the possible dynamical behavior of the system. By using Floquet theory and Filippov method to derive the monodromy matrix, the bifurcation behavior observed in the converter is accurately predicted. Based on justified and realistic approximations of the system state variables waveforms, simple and accurate expressions for these steady-state values and the monodromy matrix are derived and validated. The simple expression of the steady-state operation and the monodromy matrix allow to analytically predict the onset of instability in the system and the stability region in the parametric space is determined. Numerical simulations from the exact switched model validate the theoretical predictions.


2018 ◽  
Vol 841 ◽  
pp. 636-653
Author(s):  
Ting-Yueh Chang ◽  
Falin Chen ◽  
Min-Hsing Chang

A three-dimensional linear stability analysis is carried out for a convecting layer in which both the temperature and solute distributions are linear in the horizontal direction. The three-dimensional results show that, for $Le=3$ and 100, the most unstable mode occurs invariably as the longitudinal mode, a vortex roll with its axis perpendicular to the longitudinal plane, suggesting that the two-dimensional results are sufficient to illustrate the stability characteristics of the convecting layer. Two-dimensional results show that the stability boundaries of the transverse mode (a vortex roll with its axis perpendicular to the transverse plane) and the longitudinal modes are virtually overlapped in the regime dominated by thermal diffusion and the regime dominated by solute diffusion, while these two modes hold a significant difference in the regime the salt-finger instability prevails. More precisely, the instability area in terms of thermal Grashof number $Gr$ and solute Grashof number $Gs$ is larger for the longitudinal mode than the transverse mode, implying that, under any circumstance, the longitudinal mode is always more unstable than the transverse mode.


2017 ◽  
Vol 822 ◽  
pp. 813-847 ◽  
Author(s):  
Azan M. Sapardi ◽  
Wisam K. Hussam ◽  
Alban Pothérat ◽  
Gregory J. Sheard

This study seeks to characterise the breakdown of the steady two-dimensional solution in the flow around a 180-degree sharp bend to infinitesimal three-dimensional disturbances using a linear stability analysis. The stability analysis predicts that three-dimensional transition is via a synchronous instability of the steady flows. A highly accurate global linear stability analysis of the flow was conducted with Reynolds number $\mathit{Re}<1150$ and bend opening ratio (ratio of bend width to inlet height) $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 5$. This range of $\mathit{Re}$ and $\unicode[STIX]{x1D6FD}$ captures both steady-state two-dimensional flow solutions and the inception of unsteady two-dimensional flow. For $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 1$, the two-dimensional base flow transitions from steady to unsteady at higher Reynolds number as $\unicode[STIX]{x1D6FD}$ increases. The stability analysis shows that at the onset of instability, the base flow becomes three-dimensionally unstable in two different modes, namely a spanwise oscillating mode for $\unicode[STIX]{x1D6FD}=0.2$ and a spanwise synchronous mode for $\unicode[STIX]{x1D6FD}\geqslant 0.3$. The critical Reynolds number and the spanwise wavelength of perturbations increase as $\unicode[STIX]{x1D6FD}$ increases. For $1<\unicode[STIX]{x1D6FD}\leqslant 2$ both the critical Reynolds number for onset of unsteadiness and the spanwise wavelength decrease as $\unicode[STIX]{x1D6FD}$ increases. Finally, for $2<\unicode[STIX]{x1D6FD}\leqslant 5$, the critical Reynolds number and spanwise wavelength remain almost constant. The linear stability analysis also shows that the base flow becomes unstable to different three-dimensional modes depending on the opening ratio. The modes are found to be localised near the reattachment point of the first recirculation bubble.


2016 ◽  
Vol 26 (04) ◽  
pp. 1650066 ◽  
Author(s):  
Yan’e Wang ◽  
Jianhua Wu ◽  
Yunfeng Jia

A two-species biological depletion model in a bounded domain is investigated in which one species is a substrate and the other is an activator. Firstly, under the no-flux boundary condition, the asymptotic stability of constant steady-states is discussed. Secondly, by viewing the feed rate of the substrate as a parameter, the steady-state bifurcations from constant steady-states are analyzed both in one-dimensional kernel case and in two-dimensional kernel case. Finally, numerical simulations are presented to illustrate our theoretical results. The main tools adopted here include the stability theory, the bifurcation theory, the techniques of space decomposition and the implicit function theorem.


2016 ◽  
Vol 138 (10) ◽  
Author(s):  
Santosh Konangi ◽  
Nikhil K. Palakurthi ◽  
Urmila Ghia

The goal of this paper is to derive the von Neumann stability conditions for the pressure-based solution scheme, semi-implicit method for pressure-linked equations (SIMPLE). The SIMPLE scheme lies at the heart of a class of computational fluid dynamics (CFD) algorithms built into several commercial and open-source CFD software packages. To the best of the authors' knowledge, no readily usable stability guidelines appear to be available for this popularly employed scheme. The Euler equations are examined, as the inclusion of viscosity in the Navier–Stokes (NS) equation serves to only soften the stability limits. First, the one-dimensional (1D) Euler equations are studied, and their stability properties are delineated. Next, a rigorous stability analysis is carried out for the two-dimensional (2D) Euler equations; the analysis of the 2D equations is considerably more challenging as compared to analysis of the 1D form of equations. The Euler equations are discretized using finite differences on a staggered grid, which is used to achieve equivalence to finite-volume discretization. Error amplification matrices are determined from the stability analysis, stable and unstable regimes are identified, and practical stability limits are predicted in terms of the maximum allowable Courant–Friedrichs–Lewy (CFL) number as a function of Mach number. The predictions are verified using the Riemann problem, and very good agreement is obtained between the analytically predicted and the “experimentally” observed CFL values. The successfully tested stability limits are presented in graphical form, as compared to complicated mathematical expressions often reported in published literature. Since our analysis accounts for the solution scheme along with the full system of flow equations, the conditions reported in this paper offer practical value over the conditions that arise from analysis of simplified 1D model equations.


Author(s):  
Lorand Gabriel Parajdi ◽  
Radu Precup ◽  
Eduard Alexandru Bonci ◽  
Ciprian Tomuleasa

A mathematical model given by a two - dimensional differential system is introduced in order to understand the transition process from the normal hematopoiesis to the chronic and accelerated acute stages in chronic myeloid leukemia. A previous model of Dingli and Michor is refined by introducing a new parameter in order to differentiate the bone marrow microenvironment sensitivities of normal and mutant stem cells. In the light of the new parameter, the system now has three distinct equilibria corresponding to the normal hematopoietic state, to the chronic state, and to the accelerated acute phase of the disease. A characterization of the three hematopoietic states is obtained based on the stability analysis. Numerical simulations are included to illustrate the theoretical results.


2020 ◽  
Vol 31 (06) ◽  
pp. 2050089
Author(s):  
Cong Zhai ◽  
Weitiao Wu

The honk effect is not uncommon in the real traffic and may exert great influence on the stability of traffic flow. As opposed to the linear description of the traditional one-dimensional lattice hydrodynamic model, the high-dimensional lattice hydrodynamic model is a gridded analysis of the real traffic environment, which is a generalized form of the one-dimensional lattice model. Meanwhile, the high-dimensional traffic flow exposed to the open-ended environment is more likely to be affected by the honk effect. In this paper, we propose an extension of two-dimensional triangular lattice hydrodynamic model under honk environment. The stability condition is obtained via the linear stability analysis, which shows that the stability region in the phase diagram can be effectively enlarged under the honk effect. Modified Korteweg–de Vries equations are derived through the nonlinear stability analysis method. The kink–antikink solitary wave solution is obtained by solving the equation, which can be used to describe the propagation characteristics of density waves near the critical point. Finally, the simulation example verifies the correctness of the above theoretical analysis.


1992 ◽  
Vol 114 (1) ◽  
pp. 126-130 ◽  
Author(s):  
S. Nagarajan ◽  
D. A. Turcic

In this work critical speed ranges are determined and verified for an elastic four bar crank rocker mechanism where all links are modeled as elastic members. The procedure used for the dynamic stability analysis is described in Nagarajan and Turcic (1991). The speed range of interest where the stability analysis is performed is 195–390 rpm. The values of the critical speeds obtained in the above speed range are then verified using independent theoretical and experimental methods of analysis. The steady state strain response is obtained both theoretically and experimentally for a number of speeds in the speed range of 195–390 rpm. From these responses plots different strain characteristics versus operating speeds are obtained. These plots exhibit peaks in the response at certain speeds indicating that the dynamic response at these speeds reaches a local maximum value. The critical speed ranges determined are found to correspond quite closely to the speeds where the peaks occur. This indicates that the critical speed ranges are indeed speeds where the response of the system is larger when compared to neighboring speeds and that the methods of determining them are accurate for the application considered.


1974 ◽  
Vol 64 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Jørgen Fredsøe

A two-dimensional stability analysis of the flow in a straight alluvial channel has been carried out, using the vorticity transport equation. In the analysis an attempt has been made to account for the influence of gravity on bed-load transport, and this turned out to change the stability quite significantly.In the case of instability, the further growth of the dunes has been investigated using a second-order approximation, This nonlinear theory explains the experimental fact that the dunes very soon become asymmetric.


Sign in / Sign up

Export Citation Format

Share Document