geological medium
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 19)

H-INDEX

7
(FIVE YEARS 2)

Author(s):  
Ilya Kolesnikov ◽  
Viktor Tatarinov ◽  
Tatiana Tatarinova

A method is proposed for study the structural stability of the deformation state of structural blocks of the earth's crust, approximated in the form of plate layers of the geological medium when transverse shear bending from the action of concentrated energy impulses. Advances here are carried out in the two directions. First, in contrast to the previous article, the physical and mechanical model of the geological medium is endowed with anisotropic properties, which makes it possible to increase the adequacy of the obtained numerical results to the specifics of the real problem. Secondly, instead of the simplest bilinear 4-node finite elements, the special spectral non-algebraic 8-node finite iso-parametric finite elements are used, the use of which significantly increases both the accuracy of calculations and their reliability in the sense of ensuring the robustness of calculations for relatively small values of the plate thickness. It should be noted that the Finite Element Method uses exclusively only algebraic finite elements (power polynomials in the h-version and orthogonal polynomials in the p-version). It is known from approximation theory that the use of spectral non-algebraic approximations improves the quality of approximations. Therefore, their introduction into the structure of finite element calculations can improve the quality of modeling in the study of the strain-stress-state (SSS) of the geological medium. A structural block (SB) is understood as a plate layer with plan dimensions exceeding the thickness by more than 10 times. The identification of hazardous zones in the rock massive due to stress concentration is complemented by the development of mechanical, mathematical and computational tools for modeling the curvature of the earth's crust during bending based on the classical theory of Kirchhoff and refined Reissner-Mindlin theory. Test calculations have shown that the accuracy of the calculation and the quality of geometric modeling of fragments of an anisotropic geological environment based on the refined 8-node spectral finite element is significantly better than for the 8-node algebraic finite


Author(s):  
Марина Валерьевна Зарецкая

Методом блочного элемента проведено исследование блочной структуры, моделирующей геологический массив. Состояние геологической среды описывается уравнениями движениями для однородной, изотропной упругой среды в форме Ляме. Выписаны функциональные и псевдодифференциальные уравнения, получены интегральные представления блочного элемента. Установлены основные тенденции изменения контактных напряжений в зависимости от значений механических характеристик материала блоков и геометрических параметров структуры. The block structure method is used to study the block structure modeling a geological massif. The state of the geological medium is described by equations of motion for a homogeneous, isotropic elastic medium in the form of a Lame. Functional and pseudo-differential equations are written out, and integral representations of the block element are obtained. The main tendencies of contact stress variation are established depending on the values of the mechanical characteristics of the material of the blocks and the geometric parameters of the structure.


2020 ◽  
Vol 11 (7) ◽  
pp. 1672
Author(s):  
Marina ZARETSKAYA

One of the geological structures accountable for the implementation of seismic potential of the region is the largest vertical faults in the Earth’s interior, where earthquake foci are usually located. This article is aimed at developing a better method for calculation of stresses and strains that occur in such seismogenic areas. According to the results of the analysis of data collected during the expeditionary work, the geophysical medium is modeled by a block structure in the form of a half-space with a cut rectangular parallelepiped, which is divided into five block elements. The state of material in the geological medium is described in each block by motion equations for a homogeneous, isotropic elastic medium in the Lamé form. Following the block element method, the algorithm of the differential factorization method is implemented in each block. Based on the numerical analysis results, the main trends in contact stresses and dynamics of displacement amplitudes were determined depending on the mechanical property values of the block material and the geometric parameters of the structure.


Geosciences ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 193
Author(s):  
Wojciech Dobiński

The occurrence of permafrost within glacial environments has never been comprehensively defined based on scientific evidence, despite its importance in determining how all the components of the cryosphere associate and interact. Here, the relation between glaciers and permafrost is discussed based on what scientific field they have been traditionally associated with. As the most accepted definition of permafrost is not exclusively linked to the presence of a geological medium, this can also be ice of any origin, including snow and glacial ice. Thus, active glaciers can act as permafrost medium. Indeed, all thermal types of glaciers meet the definition of permafrost as they remain at or below 0 °C for certainly more than two consecutive years. Active rock glaciers, regardless of the origin of the ice within, also meet the definition of permafrost. The presence of an active layer is not a prerequisite for the existence of permafrost either. Therefore, a comprehensive definition of permafrost occurrence across the cryosphere is essential to appropriately understand the phenomenon as a whole, not only as seen from our planet but also as it occurs for example on the icy moons of the Solar System and other frozen rocky bodies.


2020 ◽  
Author(s):  
Paulina Harba ◽  
Krzysztof Krawiec

<p>The study presents the results of seismic measurements on the Just-Tegoborze landslide located in Outer Carpathians in the southern region of Poland. The aim of the study was to investigate the landslide geological subsurface and define S-wave velocity changes within geological medium using passive seismic interferometry (SI) and active multichannel analysis of surface waves (MASW). Additionally, seismic refraction and numerical slip surface calculations were carried out in order to combine the results.</p><p>Measurements of SI were conducted based on local high-frequency seismic noise generated by heavy vehicles passing state road which intersects Just-Tegoborze landslide. Seismic noise registration was made using three-component broadband seismometers installed along a seismic profile. Measurements were repeated in a few series in different season and hydration conditions.</p><p>Seismic sections show different velocity layers within the landslide medium. Comparing them with geological cross-section of the studied area, we can distinguish the main lithological boundaries. First near-surface seismic layers may correspond to clayey colluvium and clayey-rock colluvium. The deepest seismic layer probably correlates to less weathered flysch bedrock made of shales and sandstones. It can be identified as the main slip surface of the studied landslide.</p><p>S-wave velocities within seismic profiles significantly varies between each measurement series of SI. It can be observed a decrease of S-wave velocity in March and July which is connected to seasonal weather and hydration conditions. Strong increase of hydration during melting snow cover in March and after heavy rainfalls in July resulted in loss of rigidity what presumably led to drop of S-wave velocity. Changes in hydration could also cause the variation of the course of the less weathered flysch bedrock boundary.</p><p>Presented results of passive seismic interferometry measurements show that study of seismic noise can be applicable to subsurface identification of an active landslide. The example of Just-Tegoborze site indicates that based on seismic interferometry it is possible to observe changes in elastic properties of geological medium. It is worth to underline that SI and MASW complement each other in retrieving the information of Rayleigh surface wave. Combining the results with seismic refraction and numerical calculations allows to better image the landslide geological subsurface. Such observations may be helpful in assessing landslide threat.</p>


2020 ◽  
Vol 177 ◽  
pp. 02001
Author(s):  
Vladimir Philatov ◽  
Lubov Boltnova ◽  
Ksenya Vandysheva

Gravity is important in the history of Earth 's formation and evolution. Gravitational accretion, gravitational differentiation of Earth matter by density. Gravitational accretion, gravity differentiation of the Earth 's substance in density, its movement and other processes deform the Earth 's crust, contribute to the formation in it of different scale, shape and metallogenical specialization of plicative and disjunctive structures, with which genetically and spatially related deposits of different minerals. The link between gravity and deformation of the geological medium is its density inhomogeneities. Their role is twofold: they are either formed by gravity stresses or are themselves sources of stress and strain. The method of studying the deformation of the geological medium by gravity is called tectonophysical analysis of the gravitational field. Its physical basis is two fundamental laws: the law of world gravity and the law on proportional dependence between stress and deformation. This method solves two problems.


Sign in / Sign up

Export Citation Format

Share Document