scholarly journals Iterative approximation of split feasibility problem in real Hilbert spaces

Author(s):  
J. N. Ezeora ◽  
◽  
F. E. Bazuaye

In this paper, we propose an iterative algorithm for finding solution of split feasibility problem involving a λ−strictly pseudo-nonspreading map and asymptotically nonexpansive semigroups in two real Hilbert spaces. We prove weak and strong convergence theorems using the sequence obtained from the proposed algorithm. Finally, we applied our result to solve a monotone inclusion problem and present a numerical example to support our result.

Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 119
Author(s):  
Xinglong Wang ◽  
Jing Zhao ◽  
Dingfang Hou

The split feasibility problem models inverse problems arising from phase retrievals problems and intensity-modulated radiation therapy. For solving the split feasibility problem, Xu proposed a relaxed CQ algorithm that only involves projections onto half-spaces. In this paper, we use the dual variable to propose a new relaxed CQ iterative algorithm that generalizes Xu’s relaxed CQ algorithm in real Hilbert spaces. By using projections onto half-spaces instead of those onto closed convex sets, the proposed algorithm is implementable. Moreover, we present modified relaxed CQ algorithm with viscosity approximation method. Under suitable conditions, global weak and strong convergence of the proposed algorithms are proved. Some numerical experiments are also presented to illustrate the effectiveness of the proposed algorithms. Our results improve and extend the corresponding results of Xu and some others.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Guash Haile Taddele ◽  
Poom Kumam ◽  
Habib ur Rehman ◽  
Anteneh Getachew Gebrie

<p style='text-indent:20px;'>In this paper, we propose two new self-adaptive inertial relaxed <inline-formula><tex-math id="M2">\begin{document}$ CQ $\end{document}</tex-math></inline-formula> algorithms for solving the split feasibility problem with multiple output sets in the framework of real Hilbert spaces. The proposed algorithms involve computing projections onto half-spaces instead of onto the closed convex sets, and the advantage of the self-adaptive step size introduced in our algorithms is that it does not require the computation of operator norm. We establish and prove weak and strong convergence theorems for the iterative sequences generated by the introduced algorithms for solving the aforementioned problem. Moreover, we apply the new results to solve some other problems. Finally, we present some numerical examples to illustrate the implementation of our algorithms and compared them to some existing results.</p>


Author(s):  
Chibueze C. Okeke ◽  
Lateef O. Jolaoso ◽  
Yekini Shehu

Abstract In this paper, we propose two inertial accelerated algorithms which do not require prior knowledge of operator norm for solving split feasibility problem with multiple output sets in real Hilbert spaces. We prove weak and strong convergence results for approximating the solution of the considered problem under certain mild conditions. We also give some numerical examples to demonstrate the performance and efficiency of our proposed algorithms over some existing related algorithms in the literature.


Author(s):  
A. A. Mebawondu ◽  
L. O. Jolaoso ◽  
H. A. Abass ◽  
O. K. Narain

In this paper, we propose a new modified relaxed inertial regularization method for finding a common solution of a generalized split feasibility problem, the zeros of sum of maximal monotone operators, and fixed point problem of two nonlinear mappings in real Hilbert spaces. We prove that the proposed method converges strongly to a minimum-norm solution of the aforementioned problems without using the conventional two cases approach. In addition, we apply our convergence results to the classical variational inequality and equilibrium problems, and present some numerical experiments to show the efficiency and applicability of the proposed method in comparison with other existing methods in the literature. The results obtained in this paper extend, generalize and improve several results in this direction.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Haiying Li ◽  
Yulian Wu ◽  
Fenghui Wang

The split feasibility problem SFP has received much attention due to its various applications in signal processing and image reconstruction. In this paper, we propose two inertial relaxed C Q algorithms for solving the split feasibility problem in real Hilbert spaces according to the previous experience of applying inertial technology to the algorithm. These algorithms involve metric projections onto half-spaces, and we construct new variable step size, which has an exact form and does not need to know a prior information norm of bounded linear operators. Furthermore, we also establish weak and strong convergence of the proposed algorithms under certain mild conditions and present a numerical experiment to illustrate the performance of the proposed algorithms.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1012
Author(s):  
Suthep Suantai ◽  
Narin Petrot ◽  
Montira Suwannaprapa

We consider the split feasibility problem in Hilbert spaces when the hard constraint is common solutions of zeros of the sum of monotone operators and fixed point sets of a finite family of nonexpansive mappings, while the soft constraint is the inverse image of a fixed point set of a nonexpansive mapping. We introduce iterative algorithms for the weak and strong convergence theorems of the constructed sequences. Some numerical experiments of the introduced algorithm are also discussed.


Sign in / Sign up

Export Citation Format

Share Document