Eukaryotic Base Excision Repair: New Approaches Shine Light on Mechanism

2019 ◽  
Vol 88 (1) ◽  
pp. 137-162 ◽  
Author(s):  
William A. Beard ◽  
Julie K. Horton ◽  
Rajendra Prasad ◽  
Samuel H. Wilson

Genomic DNA is susceptible to endogenous and environmental stresses that modify DNA structure and its coding potential. Correspondingly, cells have evolved intricate DNA repair systems to deter changes to their genetic material. Base excision DNA repair involves a number of enzymes and protein cofactors that hasten repair of damaged DNA bases. Recent advances have identified macromolecular complexes that assemble at the DNA lesion and mediate repair. The repair of base lesions generally requires five enzymatic activities: glycosylase, endonuclease, lyase, polymerase, and ligase. The protein cofactors and mechanisms for coordinating the sequential enzymatic steps of repair are being revealed through a range of experimental approaches. We discuss the enzymes and protein cofactors involved in eukaryotic base excision repair, emphasizing the challenge of integrating findings from multiple methodologies. The results provide an opportunity to assimilate biochemical findings with cell-based assays to uncover new insights into this deceptively complex repair pathway.

2016 ◽  
Vol 12 (7) ◽  
pp. 2247-2256 ◽  
Author(s):  
Natalya A. Torgasheva ◽  
Natalya I. Menzorova ◽  
Yurii T. Sibirtsev ◽  
Valery A. Rasskazov ◽  
Dmitry O. Zharkov ◽  
...  

We have characterized the profile of several key base excision repair activities in the developing embryo of the grey sea urchin,Strongylocentrotus intermedius, at several stages of development.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 279 ◽  
Author(s):  
Upasna Thapar ◽  
Bruce Demple

Since the discovery of the base excision repair (BER) system for DNA more than 40 years ago, new branches of the pathway have been revealed at the biochemical level by in vitro studies. Largely for technical reasons, however, the confirmation of these subpathways in vivo has been elusive. We review methods that have been used to explore BER in mammalian cells, indicate where there are important knowledge gaps to fill, and suggest a way to address them.


DNA Repair ◽  
2021 ◽  
pp. 103258
Author(s):  
Pawlos S. Tsegay ◽  
Daniela Hernandez ◽  
Christopher Brache ◽  
Chryssostomos Chatgilialoglu ◽  
Marios G. Krokidis ◽  
...  

2019 ◽  
Vol 294 (37) ◽  
pp. 13629-13637 ◽  
Author(s):  
Suzanne J. Admiraal ◽  
Daniel E. Eyler ◽  
Michael R. Baldwin ◽  
Emily M. Brines ◽  
Christopher T. Lohans ◽  
...  

Mutagenesis ◽  
2019 ◽  
Vol 35 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Alanna R Kaplan ◽  
Peter M Glazer

Abstract Hypoxia is a hallmark of the tumour microenvironment with profound effects on tumour biology, influencing cancer progression, the development of metastasis and patient outcome. Hypoxia also contributes to genomic instability and mutation frequency by inhibiting DNA repair pathways. This review summarises the diverse mechanisms by which hypoxia affects DNA repair, including suppression of homology-directed repair, mismatch repair and base excision repair. We also discuss the effects of hypoxia mimetics and agents that induce hypoxia on DNA repair, and we highlight areas of potential clinical relevance as well as future directions.


2016 ◽  
Vol 113 (28) ◽  
pp. 7792-7797 ◽  
Author(s):  
Chenxu Zhu ◽  
Lining Lu ◽  
Jun Zhang ◽  
Zongwei Yue ◽  
Jinghui Song ◽  
...  

NEIL1 (Nei-like 1) is a DNA repair glycosylase guarding the mammalian genome against oxidized DNA bases. As the first enzymes in the base-excision repair pathway, glycosylases must recognize the cognate substrates and catalyze their excision. Here we present crystal structures of human NEIL1 bound to a range of duplex DNA. Together with computational and biochemical analyses, our results suggest that NEIL1 promotes tautomerization of thymine glycol (Tg)—a preferred substrate—for optimal binding in its active site. Moreover, this tautomerization event also facilitates NEIL1-catalyzed Tg excision. To our knowledge, the present example represents the first documented case of enzyme-promoted tautomerization for efficient substrate recognition and catalysis in an enzyme-catalyzed reaction.


2008 ◽  
Vol 29 (3) ◽  
pp. 794-807 ◽  
Author(s):  
Lyra M. Griffiths ◽  
Dan Swartzlander ◽  
Kellen L. Meadows ◽  
Keith D. Wilkinson ◽  
Anita H. Corbett ◽  
...  

ABSTRACT DNAs harbored in both nuclei and mitochondria of eukaryotic cells are subject to continuous oxidative damage resulting from normal metabolic activities or environmental insults. Oxidative DNA damage is primarily reversed by the base excision repair (BER) pathway, initiated by N-glycosylase apurinic/apyrimidinic (AP) lyase proteins. To execute an appropriate repair response, BER components must be distributed to accommodate levels of genotoxic stress that may vary considerably between nuclei and mitochondria, depending on the growth state and stress environment of the cell. Numerous examples exist where cells respond to signals, resulting in relocalization of proteins involved in key biological transactions. To address whether such dynamic localization contributes to efficient organelle-specific DNA repair, we determined the intracellular localization of the Saccharomyces cerevisiae N-glycosylase/AP lyases, Ntg1 and Ntg2, in response to nuclear and mitochondrial oxidative stress. Fluorescence microscopy revealed that Ntg1 is differentially localized to nuclei and mitochondria, likely in response to the oxidative DNA damage status of the organelle. Sumoylation is associated with targeting of Ntg1 to nuclei containing oxidative DNA damage. These studies demonstrate that trafficking of DNA repair proteins to organelles containing high levels of oxidative DNA damage may be a central point for regulating BER in response to oxidative stress.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4085-4085
Author(s):  
Batchimeg Norjmaa ◽  
Takayuki Saitoh ◽  
Atsushi Iwasaki ◽  
Yasuhiro Nitta ◽  
Yuta Masuda ◽  
...  

Abstract Background Base excision repair (BER) is critical for genome maintenance, and is mainly responsible for the correction of small base changes of DNA damage. BER pathway involved many enzymes including OGG1, XRCC1, APE1 and MUTYH. Single nucleotide polymorphisms (SNPs) in DNA repair genes result reduced DNA repair capacity, have been reported to be associated with an increased risk of various cancers including hematologic malignancies. However, it is unclear that these polymorphisms alter the susceptibility and clinical outcome of myelodysplastic syndromes (MDS) patients. The aim of this study is to evaluate the association of polymorphisms in gene encoding four key proteins of DNA BER: OGG1 Ser326Cys, XRCC1 Arg399Gln, APE1 Asp148Glu, and MUTYHGln324His with the susceptibility and clinical features of MDS. Methods Our study included 113 MDS patients [median 68.3 years, range 17.1-86.5 years; male/female 76/37; RCUD (n=37), RARS (n=6), RCMD (n=21), MDS-u (n=11), RAEB-1(n=14), RAEB-2 (n=11), others (n=13)] and 192-health control group. Twenty four patients with MDS had the history of cancer. Genetic polymorphisms in BER pathway genes were examined using PCR and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Genotype and allele frequencies were compared between patients group and control group by using χ2-test. All patients and healthy controls received written information about the study. This study was approved by the International Research Board of Gunma University Hospital. Results There was no statistically significant difference in the allele and genotype frequencies of the OGG1 Ser326Cys, XRCC1 Arg399Gln, APE1 Asp148Glu, and MUTYH Gln324His polymorphisms between the MDS patients and the control group. In the analysis of clinical characteristics, XRCC1 non Arg/Arg genotype (low DNA repair type) was significantly associated with lower Hb level (8.64±2.29g/dL vs. 9.96±2.08 g/dL, p<0.005) and higher frequency of the complex karyotype (14.9% vs. 2.8%, p=0.05). Furthermore, XRCC1 non Arg/Arg genotype was associated with therapy- related MDS (OR 3.15, 95% CI 1.24-7.98, p=0.02) and especially the past history of radiotherapy (14.3% vs. 0%, p<0.005). In contrast, the polymorphisms in OGG1 Ser326Cys, APE1 Asp148Glu, and MUTYH Gln324His were not involved in the clinical features of MDS. Conclusion The low DNA repair polymorphism, XRCC1 Arg399Gln is associated with the clinical features of MDS, including therapy- related MDS. Further investigation of BER polymorphisms will provide the understanding of pathogenesis of therapy- related MDS in a larger sample size analysis. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document