rotary swaging
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 74)

H-INDEX

16
(FIVE YEARS 6)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 650
Author(s):  
Lenka Kunčická ◽  
Radim Kocich ◽  
Petr Kačor ◽  
Michal Jambor ◽  
Miroslav Jopek

The nature of alternating current transfer via metallic materials is specific, since the current density tends to be inhomogeneous across the cross-section of the conductor and the skin effect tends to occur. However, the influence of this effect on the behaviour of the conductor can be optimized via the design and fabrication procedures. The study presents innovative design of an Al–Cu clad conductor, which is supposed to affect favourably the influence of the skin effect. The clad conductors of various diameters (20 mm, 15 mm, and 10 mm) were fabricated via rotary swaging at room temperature, and their electric characteristics were subsequently examined both experimentally and via numerical simulations. Structure analyses performed to document the effects of the swaging technology on the development of substructure and characteristic structural features were carried out by scanning electron microscopy (electron backscatter diffraction analyses), and transmission electron microscopy. The results showed that the design of the composite has a favourable effect on decreasing the power losses during alternating current transfer and that the substructure development affected favourably the electric resistance of the conductor. The highest electric resistance was measured for the composite conductor with the diameter of 20 mm (1.8% increase compared to electric resistance during transfer of direct current). This value then decreased to 0.6%, and 0.1% after swaging down to the diameters of 15 mm, and 10 mm; the 10 mm composite featured the finest grains, partially restored structure, and texture randomization compared to the 20 mm and 15 mm composites. Manufacturing of the clad composite via rotary swaging imparted advantageous combinations of both the electric and mechanical properties, as swaging also introduced increased microhardness.


Author(s):  
Meng Fang ◽  
Chuming Liu ◽  
Shunong Jiang ◽  
Hongchao Xiao ◽  
Gang Zeng ◽  
...  
Keyword(s):  

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2044
Author(s):  
Petr Kral ◽  
Jiri Dvorak ◽  
Vaclav Sklenicka ◽  
Zenji Horita ◽  
Yoichi Takizawa ◽  
...  

High-pressure sliding (HPS) and rotary swaging (RS) at room temperature were used to form severely deformed microstructures in martensitic creep-resistant P92 steel. The deformed microstructures contained markedly different ratios of low- and high-angle grain boundaries (LAGBs/HAGBs). The application of the RS method, with an imposed equivalent strain of 1.4, led to the formation of a heterogeneous microstructure with a high number of LAGBs, while the HPS method, with an imposed equivalent strain of 7.8, led to the formation of a relatively homogeneous ultrafine-grained microstructure with a significant predominance of HAGBs. Microstructure analyses after creep testing showed that the microstructure of RS- and HPS-processed P92 steel is quite stable, but a slight coarsening of subgrains and grains during creep testing can be observed. Constant load tensile creep tests at 500 °C and initial stresses ranging from 300 to 900 MPa revealed that the specimens processed by HPS exhibited higher creep strength (slower minimum creep rate) and ductility compared to the coarse-grained and RS-processed P92 steel. However, the HPS-processed P92 steel also exhibited lower values of stress exponent n than the other investigated states of P92 steel. For this reason, the differences in minimum creep rates determined for different states decrease with decreasing values of applied stress, and at applied stresses lower than 500 MPa, the creep resistance of the RS-processed state is higher than the creep resistance of the HPS-processed state.


Vacuum ◽  
2021 ◽  
pp. 110840
Author(s):  
Zhaoyi Huang ◽  
Chuming Liu ◽  
Shunong Jiang ◽  
Hongchao Xiao ◽  
Xin Chen ◽  
...  

2021 ◽  
pp. 111696
Author(s):  
Xin Chen ◽  
Chuming Liu ◽  
Shunong Jiang ◽  
Zhiyong Chen ◽  
Yingchun Wan

Author(s):  
Xin Chen ◽  
Chuming Liu ◽  
Yingchun Wan ◽  
Shunong Jiang ◽  
Xiuzhu Han ◽  
...  
Keyword(s):  

Author(s):  
Shaoxin Zhou ◽  
Jiancan Yang ◽  
Yingchao Zhang ◽  
Peng Zhang ◽  
Zuoren Nie

Sign in / Sign up

Export Citation Format

Share Document