variable flip angle
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 25)

H-INDEX

20
(FIVE YEARS 5)

2021 ◽  
Vol 8 ◽  
Author(s):  
W. Trent Franks ◽  
Ben P. Tatman ◽  
Jonah Trenouth ◽  
Józef R. Lewandowski

Order parameters are a useful tool for quantifying amplitudes of molecular motions. Here we measure dipolar order parameters by recoupling heteronuclear dipole-dipole couplings under fast spinning. We apply symmetry based recoupling methods to samples spinning under magic angle at 60 kHz by employing a variable flip angle compound inversion pulse. We validate the methods by measuring site-specific 15N-1H order parameters of a microcrystalline protein over a small temperature range and the same protein in a large, precipitated complex with antibody. The measurements of the order parameters in the complex are consistent with the observed protein undergoing overall motion within the assembly.


Author(s):  
Ayşe Nur Şirin Özcan ◽  
Kerim Arslan

Objectives: This study aimed to investigate the accuracy of conventional sagittal turbo spin echo T2-weighted (Sag TSE-T2W), variable flip angle 3D TSE (VFA-3D-TSE) and high-resolution 3D heavily T2W (HR-3D-HT2W) sequences in the diagnosis of primary aqueductal stenosis (PAS) and superior medullary velum stenosis (SMV-S), and the effect of stenosis localization on diagnosis. Methods: Seventy-seven patients were included in the study. The diagnosis accuracy of the HR-3D-HT2W, Sag TSE-T2W and VFA-3D-TSE sequences, was classified into three grades by two experienced neuroradiologists: grade 0 (the sequence has no diagnostic ability), grade 1 (the sequence diagnoses stenosis but does not show focal stenosis itself or membrane formation), and grade 2 (the sequence makes a definitive diagnosis of stenosis and shows focal stenosis itself or membrane formation). Stenosis localizations were divided into three as Cerebral Aquaduct (CA), superior medullary velum (SMV) and SMV+CA. In the statistical analysis, the grades of the sequences were compared without making a differentiation based on localization. Then, the effect of localization on diagnosis was determined by comparing the grades for individual localizations. Results: In the sequence comparison, grade 0 was not detected in the VFA-3D-TSE and HR-3D-HT2W sequences, and these sequences diagnosed all cases. On the other hand, 25.4% of grade 0 was detected with the Sag TSE-T2W sequence (P<0.05). Grade 1 was detected by VFA-3D-TSE in 23% of the cases, while grade 1 (12.5%) was detected by HRH-3D-T2W in only one case, and the difference was statistically significant (P<0.05). When the sequences were examined according to localizations, the rate of grade 0 in the Sag TSE-T2W sequence was statistically significantly higher for the SMV localization (33.3%) compared to CA (66.7%) and SMV+CA (0%) (P<0.05). Localization had no effect on diagnosis using the other sequences. Conclusion: In our study, we found that the VFA-3D-TSE and HR-3D-HT2W sequences were successful in the diagnosis of PAS and SMV-S contrary to the Sag TSE-T2W sequence.


Author(s):  
Mahesh B. Keerthivasan ◽  
Jean‐Philippe Galons ◽  
Kevin Johnson ◽  
Lavanya Umapathy ◽  
Diego R. Martin ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252966
Author(s):  
Kathryn E. Keenan ◽  
Zydrunas Gimbutas ◽  
Andrew Dienstfrey ◽  
Karl F. Stupic ◽  
Michael A. Boss ◽  
...  

Recent innovations in quantitative magnetic resonance imaging (MRI) measurement methods have led to improvements in accuracy, repeatability, and acquisition speed, and have prompted renewed interest to reevaluate the medical value of quantitative T1. The purpose of this study was to determine the bias and reproducibility of T1 measurements in a variety of MRI systems with an eye toward assessing the feasibility of applying diagnostic threshold T1 measurement across multiple clinical sites. We used the International Society of Magnetic Resonance in Medicine/National Institute of Standards and Technology (ISMRM/NIST) system phantom to assess variations of T1 measurements, using a slow, reference standard inversion recovery sequence and a rapid, commonly-available variable flip angle sequence, across MRI systems at 1.5 tesla (T) (two vendors, with number of MRI systems n = 9) and 3 T (three vendors, n = 18). We compared the T1 measurements from inversion recovery and variable flip angle scans to ISMRM/NIST phantom reference values using Analysis of Variance (ANOVA) to test for statistical differences between T1 measurements grouped according to MRI scanner manufacturers and/or static field strengths. The inversion recovery method had minor over- and under-estimations compared to the NMR-measured T1 values at both 1.5 T and 3 T. Variable flip angle measurements had substantially greater deviations from the NMR-measured T1 values than the inversion recovery measurements. At 3 T, the measured variable flip angle T1 for one vendor is significantly different than the other two vendors for most of the samples throughout the clinically relevant range of T1. There was no consistent pattern of discrepancy between vendors. We suggest establishing rigorous quality control procedures for validating quantitative MRI methods to promote confidence and stability in associated measurement techniques and to enable translation of diagnostic threshold from the research center to the entire clinical community.


2021 ◽  
Author(s):  
Beatrice Lena ◽  
Clemens Bos ◽  
Cyril J. Ferrer ◽  
Chrit T. W. Moonen ◽  
Max A. Viergever ◽  
...  

NeuroImage ◽  
2021 ◽  
pp. 117897
Author(s):  
Zijing Dong ◽  
Fuyixue Wang ◽  
Kwok-Shing Chan ◽  
Timothy G. Reese ◽  
Berkin Bilgic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document