initial pulse
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
Vol 924 (2) ◽  
pp. L27
Author(s):  
George Younes ◽  
Samuel K Lander ◽  
Matthew G. Baring ◽  
Teruaki Enoto ◽  
Chryssa Kouveliotou ◽  
...  

Abstract Magnetars, isolated neutron stars with magnetic-field strengths typically ≳1014 G, exhibit distinctive months-long outburst epochs during which strong evolution of soft X-ray pulse profiles, along with nonthermal magnetospheric emission components, is often observed. Using near-daily NICER observations of the magnetar SGR 1830-0645 during the first 37 days of a recent outburst decay, a pulse peak migration in phase is clearly observed, transforming the pulse shape from an initially triple-peaked to a single-peaked profile. Such peak merging has not been seen before for a magnetar. Our high-resolution phase-resolved spectroscopic analysis reveals no significant evolution of temperature despite the complex initial pulse shape, yet the inferred surface hot spots shrink during peak migration and outburst decay. We suggest two possible origins for this evolution. For internal heating of the surface, tectonic motion of the crust may be its underlying cause. The inferred speed of this crustal motion is ≲100 m day−1, constraining the density of the driving region to ρ ∼ 1010 g cm−3, at a depth of ∼200 m. Alternatively, the hot spots could be heated by particle bombardment from a twisted magnetosphere possessing flux tubes or ropes, somewhat resembling solar coronal loops, that untwist and dissipate on the 30–40 day timescale. The peak migration may then be due to a combination of field-line footpoint motion (necessarily driven by crustal motion) and evolving surface radiation beaming. This novel data set paints a vivid picture of the dynamics associated with magnetar outbursts, yet it also highlights the need for a more generic theoretical picture where magnetosphere and crust are considered in tandem.


2021 ◽  
Vol 129 (10) ◽  
pp. 1286
Author(s):  
Р.М. Архипов ◽  
М.В. Архипов ◽  
C.В. Федоров ◽  
Н.Н. Розанов

Obtaining unipolar half-cycle optical pulses of femto- and attosecond duration with a large electrical area is an urgent but difficult task. The reason for the emerging difficulties lies in the existence of the rule of conservation of the electrical area of ​​the pulse, which does not allow converting a bipolar pulse into a unipolar one. In this work, it is shown that in a resonant medium a low-cycle pulse can be converted into two unipolar pulses separated in time by a distance that is an order of magnitude or more longer than the duration of the initial pulse. This allows in a number of problems to consider such pulses separately as unipolar. The estimation of the electric area value relative to its "atomic scale" is carried out.


Author(s):  
Clint Chester Reyes ◽  
Eric Cruz ◽  
Edgardo Kasilag ◽  
Laurenz Luigi Cruz

A simulative analysis methodology is presented and discussed to hindcast the propagation and shallow water transformation of a historical tsunami wave. The initial pulse of water surface induced is numerically modelled based on known geophysical data of earthquake magnitude and seismically induced seabed displacements. The propagation model accounts for the trans-sea movement, long wave propagation and damping, and shallow water transformations but excluding wave runup on the foreshore. The methodology is applied to the Philippine Trench 2012 tsunamigenic event using secondary data from regional geophysical databases and yielded good agreement with observed tsunami heights and arrival times recorded for local and regional locations, particularly at deeper and farther locations from the source.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/SU7IKLh2NDM


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
L.A. Yurovskiy ◽  
◽  
I.V. Zotova ◽  
E.B. Abubakirov ◽  
R.M. Rozental ◽  
...  

We theoretically investigate the possibility of generating ultra-high-power ultrashort microwave pulses based on the Chirped-Pulse Amplification (CPA) method, which is widely used in laser physics. This method includes preliminary elongation of the initial pulse in a stretcher, sequential amplification of spectral components in a broadband amplifier, and compression in a line with negative dispersion (compressor). We consider the scheme in which waveguides with multi-fold helical corrugation are used as dispersing elements (stretcher and compressor), and a relativistic Cherenkov TWT or helical gyro-TWT is used as an amplifier. For the parameters of experimentally realized amplifiers in the 30 GHz range, we show that the peak pulse power in the stretcher-amplifier-compressor system significantly exceeds not only the saturation level of the amplifier, but also more than 4 times higher than the power of the used electron beam.


Author(s):  
Wei-Liang Qian ◽  
Kai Lin ◽  
Jian-Pin Wu ◽  
Bin Wang ◽  
Rui-Hong Yue

AbstractIn the study of perturbations around black hole configurations, whether an external source can influence the perturbation behavior is an interesting topic to investigate. When the source acts as an initial pulse, it is intuitively acceptable that the existing quasinormal frequencies will remain unchanged. However, the confirmation of such an intuition is not trivial for the rotating black hole, since the eigenvalues in the radial and angular parts of the master equations are coupled. We show that for the rotating black holes, a moderate source term in the master equation in the Laplace s-domain does not modify the quasinormal modes. Furthermore, we generalize our discussions to the case where the external source serves as a driving force. Different from an initial pulse, an external source may further drive the system to experience new perturbation modes. To be specific, novel dissipative singularities might be brought into existence and enrich the pole structure. This is a physically relevant scenario, due to its possible implication in modified gravity. Our arguments are based on exploring the pole structure of the solution in the Laplace s-domain with the presence of the external source. The analytical analyses are verified numerically by solving the inhomogeneous differential equation and extracting the dominant complex frequencies by employing the Prony method.


2020 ◽  
Vol 38 (3) ◽  
pp. 188-196
Author(s):  
Gunjan Purohit ◽  
Priyanka Rawat ◽  
Pradeep Kothiyal ◽  
Ramesh Kumar Sharma

AbstractThis article presents a preliminary study of the longitudinal self-compression of ultra-intense Gaussian laser pulse in a magnetized plasma, when relativistic nonlinearity is active. This study has been carried out in 1D geometry under a nonlinear Schrodinger equation and higher-order paraxial (nonparaxial) approximation. The nonlinear differential equations for self-compression and self-focusing have been derived and solved by the analytical and numerical methods. The dielectric function and the eikonal have been expanded up to the fourth power of r (radial distance). The effect of initial parameters, namely incident laser intensity, magnetic field, and initial pulse duration on the compression of a relativistic Gaussian laser pulse have been explored. The results are compared with paraxial-ray approximation. It is found that the compression of pulse and pulse intensity of the compressed pulse is significantly enhanced in the nonparaxial region. It is observed that the compression of the high-intensity laser pulse depends on the intensity of laser beam (a0), magnetic field (ωc), and initial pulse width (τ0). The preliminary results show that the pulse is more compressed by increasing the values of a0, ωc, and τ0.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4262 ◽  
Author(s):  
Chengyu Guan ◽  
Zemin Zhou ◽  
Xinwu Zeng

Frequency-modulated pulse trains can be applied in active sonar systems to improve the performance of conventional transmitted waveforms. Recently, two pulse trains have been widely researched as the transmitted waveforms for active sonars. The LFM-Costas pulse train was formed by modulating the linear frequency-modulated (LFM) waveform via the Costas sequence to remove the Doppler ambiguity of LFM pulses. The generalized sinusoidal frequency-modulated (GSFM) waveform, another frequency-modulated pulse train, achieved an ideal ambiguity function shape with thumbtack mainlobe. In this paper, we focus on constructing an optimization model to optimize the LFM-Costas and GSFM pulse trains with the genetic algorithm. The pulse trains can be improved on properties of both ambiguity function and correlations between sub-pulses. The optimized pulse trains are proven to have better detection performance than those of the initial pulse trains, including the lower sidelobe levels of ambiguity function, as well as lower cross-correlation property. Moreover, it is affirmed that the reverberation suppression performance of pulse trains has also been improved through the optimization model.


Sign in / Sign up

Export Citation Format

Share Document