peptidergic neurons
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 10)

H-INDEX

33
(FIVE YEARS 1)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Joseph L Bedont ◽  
Hirofumi Toda ◽  
Mi Shi ◽  
Christine H Park ◽  
Christine Quake ◽  
...  

Sleep is a conserved and essential behavior, but its mechanistic and functional underpinnings remain poorly defined. Through unbiased genetic screening in Drosophila, we discovered a novel short-sleep mutant we named argus. Positional cloning and subsequent complementation, CRISPR/Cas9 knock-out, and RNAi studies identified Argus as a transmembrane protein that acts in adult peptidergic neurons to regulate sleep. argus mutants accumulate undigested Atg8a(+) autophagosomes, and genetic manipulations impeding autophagosome formation suppress argus sleep phenotypes, indicating that autophagosome accumulation drives argus short-sleep. Conversely, a blue cheese neurodegenerative mutant that impairs autophagosome formation was identified independently as a gain-of-sleep mutant, and targeted RNAi screens identified additional genes involved in autophagosome formation whose knockdown increases sleep. Finally, autophagosomes normally accumulate during the daytime and nighttime sleep deprivation extends this accumulation into the following morning, while daytime gaboxadol feeding promotes sleep and reduces autophagosome accumulation at nightfall. In sum, our results paradoxically demonstrate that wakefulness increases and sleep decreases autophagosome levels under unperturbed conditions, yet strong and sustained upregulation of autophagosomes decreases sleep, whereas strong and sustained downregulation of autophagosomes increases sleep. The complex relationship between sleep and autophagy suggested by our findings may have implications for pathological states including chronic sleep disorders and neurodegeneration, as well as for integration of sleep need with other homeostats, such as under conditions of starvation.


2021 ◽  
Author(s):  
Thomas Topilko ◽  
Silvina L. Diaz ◽  
Catarina M. Pacheco ◽  
Florine Verny ◽  
Charlotte Deleuze ◽  
...  
Keyword(s):  

Author(s):  
Yu-Hong Zhang ◽  
Mingrui Xu ◽  
Si Li ◽  
Haoda Wu ◽  
Xiang Shi ◽  
...  

AbstractThe hypothalamus contains an astounding heterogeneity of neurons to achieve its role in regulating endocrine, autonomic and behavioral functions. Despite previous progress in deciphering the gene regulatory programs linked to hypothalamus development, its molecular developmental trajectory and origin of neuronal diversity remain largely unknown. Here we combine transcriptomic profiling of 43,261 cells derived from Rax+ hypothalamic neuroepithelium with lineage tracing to map a developmental landscape of mouse hypothalamus and delineate the developmental trajectory of radial glial cells (RGCs), intermediate progenitor cells (IPCs), nascent neurons and peptidergic neurons in the lineage hierarchy. We show that RGCs adopt a conserved strategy for multipotential differentiation but generate both Ascl1+ and Neurog2+ IPCs, which display regionally differential origins in telencephalon. As transit-amplifying cells, Ascl1+ IPCs differ from their telencephalic counterpart by displaying fate bifurcation to produce both glutamatergic and GABAergic neurons. After classifying the developing neurons into 29 subtypes coded by diverse transcription factors, neurotransmitters and neuropeptides, we identified their molecular determinants via regulon analysis and further found that postmitotic neurons at nascent state possess the potential to resolve into more diverse subtypes of peptidergic neurons. Together, our study offers a single-cell framework for hypothalamus development and reveals that multiple cell types along the order of lineage hierarchy contribute to the fate diversification of hypothalamic neurons in a stepwise fashion, suggesting that a cascade diversifying model can deconstruct the origin of neuronal diversity.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A9-A9
Author(s):  
A R Poe ◽  
M Szuperak ◽  
M S Kayser

Abstract Introduction Sleep during early life is thought to be important for brain development. Indeed, disruptions in sleep during development have long-lasting effects on cognitive functioning. Recently, our lab has developed the LarvaLodge platform for monitoring sleep in developing Drosophila larvae. Using this system we can investigate the neural circuits and signals controlling sleep during early neurodevelopmental periods. Neuropeptides play critical roles in regulating many behaviors in both larvae and adult flies.While several neuropeptides modulate sleep in adult flies, it is not known what role neuropeptides play in controlling larval sleep. Methods To identify peptidergic neurons that regulate 2nd instar larval sleep, we activated neurons labeled by 34 independent Gal4 driver lines corresponding to 25 different neuropeptide genes using the heat-sensitive cation channel, TrpA1. Results Of the 34 Gal4 driver lines, we determined that 2 lines are wake-promoting and 7 lines are sleep-promoting. A subset of these exert effects on sleep without associated changes in wake activity levels. We also observed sleep fragmentation (increase in sleep bout number and decrease in sleep bout length) in 3 lines. Subsequent analysis indicated that manipulation of activity in Diuretic hormone 44 (Dh44)-labeled neurons bidirectionally modulates sleep-wake. Additionally, pan-neuronal knockdown of Dh44 altered sleep duration. Conclusion This work indicates that neuropeptidergic signaling modulates sleep during early development and provides a platform to examine how neuropeptidergic regulation of sleep/wake changes throughout the lifespan. Support NIH T32


2020 ◽  
Author(s):  
Tara N Edwards ◽  
Shiqun Zhang ◽  
Andrew Liu ◽  
Jonathan A. Cohen ◽  
Paul Yifan Zhou ◽  
...  

AbstractIntestinal microbes release ATP to modulate local immune responses. Herein we demonstrates that Candida albicans, an opportunistic commensal fungus, also modulates immune responses via secretion of ATP. We found that ATP secretion from C. albicans varied between standard laboratory strains. A survey of eighty-nine clinical isolates revealed heterogeneity in ATP secretion, independent of growth kinetics and intracellular ATP levels. Isolates from blood released less ATP than commensals, suggesting that ATP secretion assists with commensalism. To confirm this, cohorts of mice were infected with strains matched for origin, and intracellular ATP concentration, but high or low extracellular ATP. In all cases fungal burden was inversely correlated with ATP secretion. Mice lacking P2RX7, the key ATP receptor expressed by immune cells in the skin, showed no alteration in fungal burden. Rather, treatments with a P2RX2/3 antagonist result in increased fungal burden. P2RX2/3 is expressed by non-peptidergic neurons that terminate in the epidermis. Cultured sensory neurons flux Ca2+ when exposed to supernatant from heat-killed C. albicans (HKCA), and these non-peptidergic fibers are the dominant subset that respond to HKCA. Ca2+ flux, but not CGRP-release, can be abrogated by pretreatment of HKCA supernatant with apyrase. To determine whether non-peptidergic neurons participate in host defense, we generated MRGPRD-DTR mice. Infection in these mice resulted in increased CFU only for those C. albicans strains with high ATP secretion. Taken together, our findings indicate that C. albicans releases ATP, which is recognized by non-peptidergic nerves in the skin resulting in augmented anti-Candida immune responses.Author SummaryBacterial release of ATP has been shown to modulate immune responses. Candida albicans displays heterogeneity in ATP release among laboratory strains and commensal clinical isolates release more ATP than invasive isolates. C. albicans strains with high ATP secretion show lower fungal burden following epicutaneous infection. Mice lacking P2RX7, the key ATP receptor expressed by immune cells, showed no alteration in fungal burden. In contrast, treatment with P2RX2/3 antagonists resulted in increased fungal burden. P2RX3 is expressed by a subset of non-peptidergic neurons that terminate in the epidermis. These non-peptidergic fibers are the predominant responders when cultured sensory neurons are exposed to heat-killed C. albicans in vitro. Mice lacking non-peptidergic neurons have increased infection when exposed to high but not low ATP-secreting isolates of C. albicans. Taken together, our findings indicate that C. albicans releases ATP which is recognized by non-peptidergic nerves in the skin resulting in augmented anti-Candida immune responses.Bullet pointsATP released from heat killed C. albicans activates non-peptidergic sensory neuronsLive C. albicans clinical isolates release variable amounts of ATPElevated levels of ATP released by C. albicans correlates with reduced infectivity in vivoMRGPRD-expressing cutaneous neurons are required for defense against ATP-secreting C. albicans


2019 ◽  
Vol 280 ◽  
pp. 1-8 ◽  
Author(s):  
Madison J. Acker ◽  
Mohamed R. Habib ◽  
Griffin A. Beach ◽  
Jillian M. Doyle ◽  
Mark W. Miller ◽  
...  

2019 ◽  
Author(s):  
Dennis Pauls ◽  
Yasin Hamarat ◽  
Luisa Trufasu ◽  
Tim M. Schendzielorz ◽  
Gertrud Gramlich ◽  
...  

AbstractNeuropeptides are processed from larger preproproteins by a dedicated set of enzymes. The molecular and biochemical mechanisms underlying preproprotein processing and the functional importance of processing enzymes are well characterised in mammals, but little studied outside this group. In contrast to mammals, Drosophila lacks a gene for carboxypeptidase E (CPE), a key enzyme for mammalian peptide processing.By combining peptidomics and neurogenetics, we addressed the role of Drosophila carboxypeptidase D (dCPD) in global neuropeptide processing and selected peptide-regulated behaviours. We found that a deficiency in dCPD results in C-terminally extended peptides across the peptidome, suggesting that dCPD took over CPE function in the fruit fly. dCPD is widely expressed throughout the nervous system, including peptidergic neurons in the mushroom body and neuroendocrine cells expressing adipokinetic hormone. Conditional hypomorphic mutation in the dCPD-encoding gene silver in the larva causes lethality, and leads to deficits in adult starvation-induced hyperactivity and appetitive gustatory preference, as well as to reduced survival rate and activity levels. A phylogenomic analysis suggests that loss of CPE is not a common insect feature, but specifically occured in Hymenoptera and Diptera. Our results show that dCPD is a key enzyme for neuropeptide processing in Drosophila, and is required for proper peptide-regulated behaviour. dCPD thus appears as a suitable target to genetically shut down total neuropeptide production in peptidergic neurons. Our results raise the question why Drosophila and other Diptera and Hymenoptera –unlike other insects-have obviously lost the gene for CPE but kept a gene encoding CPD.


Sign in / Sign up

Export Citation Format

Share Document