Control of electrohydrodynamic (EHD) flow by secondary electric potential

Author(s):  
Jae Won Lee ◽  
Hyun Heo ◽  
Dong Kee Sohn ◽  
Han Seo Ko
Keyword(s):  
Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1331
Author(s):  
Scott Ikard ◽  
Andrew Teeple ◽  
Delbert Humberson

The Rio Grande/Río Bravo del Norte (hereinafter referred to as the “Rio Grande”) is the primary source of recharge to the Mesilla Basin/Conejos-Médanos aquifer system in the Mesilla Valley of New Mexico and Texas. The Mesilla Basin aquifer system is the U.S. part of the Mesilla Basin/Conejos-Médanos aquifer system and is the primary source of water supply to several communities along the United States–Mexico border in and near the Mesilla Valley. Identifying the gaining and losing reaches of the Rio Grande in the Mesilla Valley is therefore critical for managing the quality and quantity of surface and groundwater resources available to stakeholders in the Mesilla Valley and downstream. A gradient self-potential (SP) logging survey was completed in the Rio Grande across the Mesilla Valley between 26 June and 2 July 2020, to identify reaches where surface-water gains and losses were occurring by interpreting an estimate of the streaming-potential component of the electrostatic field in the river, measured during bankfull flow. The survey, completed as part of the Transboundary Aquifer Assessment Program, began at Leasburg Dam in New Mexico near the northern terminus of the Mesilla Valley and ended ~72 kilometers (km) downstream at Canutillo, Texas. Electric potential data indicated a net losing condition for ~32 km between the Leasburg Dam and Mesilla Diversion Dam in New Mexico, with one ~200-m long reach showing an isolated saline-groundwater gaining condition. Downstream from the Mesilla Diversion Dam, electric-potential data indicated a neutral-to-mild gaining condition for 12 km that transitioned to a mild-to-moderate gaining condition between 12 and ~22 km downstream from the dam, before transitioning back to a losing condition along the remaining 18 km of the survey reach. The interpreted gaining and losing reaches are substantiated by potentiometric surface mapping completed in hydrostratigraphic units of the Mesilla Basin aquifer system between 2010 and 2011, and corroborated by surface-water temperature and conductivity logging and relative median streamflow gains and losses, quantified from streamflow measurements made annually at 16 seepage-measurement stations along the survey reach between 1988 and 1998 and between 2004 and 2013. The gaining and losing reaches of the Rio Grande in the Mesilla Valley, interpreted from electric potential data, compare well with relative median streamflow gains and losses along the 72-km long survey reach.


2016 ◽  
Vol 31 (02n03) ◽  
pp. 1641031 ◽  
Author(s):  
S. P. Gavrilov ◽  
D. M. Gitman

We consider QED with strong external backgrounds that are concentrated in restricted space areas. The latter backgrounds represent a kind of spatial x-electric potential steps for charged particles. They can create particles from the vacuum, the Klein paradox being closely related to this process. We describe a canonical quantization of the Dirac field with x-electric potential step in terms of adequate in- and out-creation and annihilation operators that allow one to have consistent particle interpretation of the physical system under consideration and develop a nonperturbative (in the external field) technics to calculate scattering, reflection, and electron-positron pair creation. We resume the physical impact of this development.


2000 ◽  
Vol 42 (7-8) ◽  
pp. 335-343 ◽  
Author(s):  
S. Shiba ◽  
S. Hino ◽  
Y. Hirata ◽  
T. Seno

The operational variables of electrokinetic remediation have not been cleared yet, because this method is relatively new and is an innovative technique in the aquifer remediation. In order to investigate the operational variables of the electrokinetic remediation, a mathematical model has been constructed based on the physico chemical mass transport process of heavy metals in pore water of contaminated aquifer. The transport of the heavy metals is driven not only by the hydraulic flow due to the injection of the purge water but also by the electromigration due to the application of the electric potential gradient. The electric potential between anode and cathode is the important operational variable for the electrokinetic remediation. From the numerical simulations with use of this model it is confirmed that the remediation starts from the up stream anode and gradually the heavy metal is transported to the down stream cathode and drawn out through the purge water.


2019 ◽  
Vol 5 (1) ◽  
pp. 85-88
Author(s):  
René Machts ◽  
Alexander Hunold ◽  
Jens Haueisen

AbstractCurrent dipoles are well established models in the localization of neuronal activity to electroencephalography (EEG) data. In physical phantoms, current dipoles can be used as signal sources. Current dipoles are often powered by constant current sources connected via twisted pair wires mostly consisting of copper. The poles are typically formed by platinum wires. These wires as well as the dipole housing might disturb the electric potential distributions in physical phantom measurements. We aimed to quantify this distortion by comparing simulation setups with and without the wires and the housing. The electric potential distributions were simulated using finite element method (FEM). We chose a homogenous volume conductor surrounding the dipoles, which was 100 times larger than the size of the dipoles. We calculated the difference of the electric potential at the surface of the volume conductor between the simulations with and without the connecting wires and the housing. Comparing simulations neglecting all connecting wires and the housing rod to simulations considering them, the electric potential at the surface of the volume conductor differed on average by 2.85 %. Both platinum and twisted pair copper wires had a smaller effect on the electric potentials with a maximum average change of 6.38 ppm. Consequently, source localization of measurements in physical head phantoms should consider these rods in the forward model.


Sign in / Sign up

Export Citation Format

Share Document