scholarly journals Flexible SERS Sensors Based on Carbon Nanomaterials-Supported Au Nanostructures

2021 ◽  
Vol 6 (1) ◽  
pp. 7
Author(s):  
Rong Yang ◽  
Weichen Fang ◽  
Xiao Zuo ◽  
Igor M. De Rosa ◽  
Wenbo Xin

Surface-enhanced Raman scattering (SERS) is a powerful technique to detect analytes in a label-free and non-destructive way at extremely low concentrations, even down to the single-molecule level. In the present study, a series of anisotropic Au nanostructures are integrated onto the platforms of carbon nanomaterials, mainly including carbon nanotubes (CNTs) and graphene, in order to fabricate high-performance flexible SERS sensors. Sizes, dimensions, and shapes of Au nanostructures can be well controlled through this strategy, based on which Au nanowires, nanoribbons, nanoplates, nanobelts, and nanoframes are successfully deposited onto CNT films and graphene templates, respectively. Significantly enhanced plasmonic activity originates from these Au nanocrystals, which provide increased SERS signals of the analytes by many orders of magnitude, while CNT films or graphene substrates offer superior flexibility and accessibility. For instance, A flexible SERS sensor made of graphene supported Au nanoframes can detect the analyte R6G at the concentration as low as 10−9 M. The mechanism for the sensitivity enhancement could be attributed to the homogenous distribution of Au nanoframes on the graphene support as well as the strong molecule adsorption to the graphene nanoporous network.

2020 ◽  
Author(s):  
Kosti Tapio ◽  
Amr Mostafa ◽  
Yuya Kanehira ◽  
Antonio Suma ◽  
Anushree Dutta ◽  
...  

Abstract DNA origami technology allows for the precise nanoscale assembly of chemical entities that give rise to new functional materials. We have created a versatile DNA Origami Nanofork Antenna (DONA) by assembling Au or Ag nanoparticle dimers with different gap sizes down to 1.17 nm, enabling signal enhancements in surface-enhanced Raman scattering (SERS) of up to 1011. This allows for single-molecule SERS measurements, which can even be performed with larger gap sizes to accommodate differently sized molecules, and at various excitation wavelengths. A general scheme is presented to place single analyte molecules into the SERS hot spots using the DNA origami structure exploiting covalent and non-covalent coupling schemes. By using Au and Ag dimers, single-molecule SERS measurements of three dyes and cytochrome c and horseradish peroxidase proteins are demonstrated even under non-resonant excitation conditions, thus providing long photostability during time-series measurement, and enabling unprecedented optical monitoring of single molecules.


2020 ◽  
Author(s):  
Kosti Tapio ◽  
Amr Mostafa ◽  
Yuya Kanehira ◽  
Antonio Suma ◽  
Anushree Dutta ◽  
...  

Abstract DNA origami technology allows for the precise nanoscale assembly of chemical entities that give rise to new functional materials. We have created a versatile DNA Origami Nanofork Antenna (DONA) by assembling Au or Ag nanoparticle dimers with 1.17 ± 0.67 nm gap size, enabling signal enhancements in surface-enhanced Raman scattering (SERS) of up to 1011. This allows for single-molecule SERS measurements, which can even be performed with larger gap sizes to accommodate differently sized molecules, and at various excitation wavelengths. A general scheme is presented to place single analyte molecules into the SERS hot spots using the DNA origami structure exploiting covalent and non-covalent coupling schemes. By using Au and Ag dimers, single-molecule SERS measurements of three dyes and cytochrome c and horseradish peroxidase proteins are demonstrated even under non-resonant excitation conditions, thus providing long photostability during time-series measurement, and enabling unprecedented optical monitoring of single molecules and DNA origami based nanomachines.


Sign in / Sign up

Export Citation Format

Share Document