polyether polyol
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 23)

H-INDEX

11
(FIVE YEARS 2)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 628
Author(s):  
Sylwia Dworakowska ◽  
Adrien Cornille ◽  
Dariusz Bogdal ◽  
Bernard Boutevin ◽  
Sylvain Caillol

High oleic sunflower oil-based polyol was obtained by thiol-ene coupling and applied in the preparation of flexible polyurethane foams. The photochemically initiated thiol-ene click reaction was carried out under UV irradiation using 2-mercaptoethanol. Bio-based polyol with hydroxyl value of 201.4 mg KOH/g was used as 30 wt% substituent of petrochemical polyether polyol in the formulations of flexible foams. Both reference foams, as well as foams modified with bio-based polyol, were formulated to have various isocyanate indices (0.85, 0.95, 1.05). Flexible foams were compared in terms of their thermomechanical properties and analyzed using FT-IR and SEM microscopy. Modification with bio-based polyol resulted in foams with superior compression properties, higher support factor, and lower resilience than reference foams. TGA and FT-IR curves confirmed the presence of urethane/urea and ether linkages in the polyurethane matrix. Moreover, double glass transition temperature corresponding to soft and hard segments of polyurethane was observed by DSC proving the phase-separated morphology.


2022 ◽  
pp. 0021955X2110626
Author(s):  
Adnan Srihanum ◽  
Maznee TI Tuan Noor ◽  
Kosheela PP Devi ◽  
Seng Soi Hoong ◽  
Nurul H Ain ◽  
...  

Palm olein-based polyol (PP) was used as a partial replacement for commercial sucrose/glycerine initiated polyether polyol (GP) for the production of low density rigid polyurethane foams (RPUFs). The hydroxyl value (OHV) of the GP was 380 mg KOH/g, whereas the OHV for PP was 360 mg KOH/g. The RPUFs were prepared by replacing the GP with PP up to 50 parts per hundred parts of polyols (pph). Characterisation of the RPUFs, including density, compressive strength and strain, cell morphology and thermal conductivity ( k-value), were conducted. The dimensional stability of the foams was also evaluated. The study showed improvement in the compressive strength and strain for palm-based RPUFs with the incorporation of up to 30 pph PP as compared to GP foams. The lowest k-value (0.0232 W/m.K) of RPUF with density below 30 kg/m3 was obtained with the incorporation of 10 pph PP. This was due to the smallest and uniform pore size distribution observed using SEM images. The dimensional stability of the RPUF prepared from PP was within the acceptable range. Thus, the RPUFs made from PP are potential candidates to be used as insulation for refrigerators, freezers and piping.


2021 ◽  
Vol 22 (22) ◽  
pp. 12207
Author(s):  
Joanna Niesiobędzka ◽  
Ewa Głowińska ◽  
Janusz Datta

This study concerns bio-based urethane prepolymers. The relationship between the chemical structure and the thermal and processing parameters of bio-based isocyanate-terminated ether and ester-urethane prepolymers was investigated. Bio-based prepolymers were obtained with the use of bio-monomers such as bio-based diisocyanate, bio-based polyether polyol or polyester polyols. In addition to their composition, the bio-based prepolymers were different in the content of iso-cyanate groups content (ca. 6 and 8%). The process of pre-polymerization and the obtained bio-based prepolymers were analyzed by determining the content of unreacted NCO groups, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, thermogravimetry, and rheological measurements. The research conducted facilitated the evaluation of the properties and processability of urethane prepolymers based on natural components. The results indicate that a significant impact on the processability has the origin the polyol ingredient as well as the NCO content. The thermal stability of all of the prepolymers is similar. A prepolymer based on a poly-ether polyol is characterized by a lower viscosity at a lower temperature than the prepolymer based on a polyester polyol. The viscosity value depends on the NCO content.


2021 ◽  
Vol 87 (9) ◽  
pp. 20-29
Author(s):  
E. P. Medyantseva ◽  
D. V. Brusnitsyn ◽  
E. R. Gazizullina ◽  
R. M. Beylinson ◽  
S. A. Eremin ◽  
...  

Biosensor devices including hybrid nanostructures as modifiers of transducer surfaces meet current requirements for the methods of research and determination of drugs, including antidepressants. The fea­tures of amperometric monoamine oxidase biosensors based on printed carbon electrodes modified with nanocomposite compositions C60 / cobalt nanoparticles/amino derivative of polyether polyol of the second generation/chitosan nanocomposite structures used for the detection of tricyclic antidepressant amitriptyline are considered. The choice of the best modifier was made proceeding from the data of transmission electron microscopy, scanning electron microscopy, electrochemical impedance spectroscopy, and differential pulse voltammetry. When developing the biosensor, conditions for depositing the composite composition of cobalt nanoparticles/amino derivative of polyether polyol on the electrode surface were varied: electrochemical deposition, sequential layer-by-layer deposition, and deposition of the mixture. The peak of electrochemical oxidation of hydrogen peroxide, which is formed during the enzymatic reaction of serotonin oxidation under the action of monoamine oxidase was used as an analytical signal of the biosensor. The principle of the biosensor action is based on the inhibitory effect of amitriptyline on the catalytic activity of immobilized monoamine oxidase. The proper choice of a modifier and optimal working conditions provided the range of detectable concentrations of amitriptyline: 1 x 10-4 - 1 x 10-8 M, the lower limit of the determined content at a level of 5 x 10-9 M for monoamine oxidase biosensor. Comparison of the results on the amitriptyline content determination in the pharmaceutical preparation and urine obtained using the monoamine oxidase biosensor and polarization fluorescence immunoassay (dilution of the tracer 1:32, dilution of antibodies 1:128, the range of working concentrations 5 x 10 -8 — 5 x 10-9 M), well-proven in the quantitative determination of medicinal substance, confirmed the correctness of the results obtained.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1005 ◽  
Author(s):  
Juan Liu ◽  
Shan-Shan Jin ◽  
Ying-Ping Qi ◽  
Yong-Feng Shen ◽  
Hua Li

Paper historic relics are of great value to research and preserve. However, with the change of environment, paper cultural relics are constantly aging and damaged. Therefore, the reinforcement and conservation of the paper is an important topic in the field of cultural relics protection; thus, it is a crucial and arduous task to discover high-performance protective materials. The coating reinforcement method is a kind of commonsense method to strengthen the paper. Additionally, it is key to select appropriate reinforcing resins. Polyurethane has influence on the improvement of paper strength, stability, and appearance. The epoxycyclohexane-epoxychloropropane polyether polyol was prepared with epoxycyclohexane and epoxychloropropane as materials, glycerol as the initiator, boron trifluoride diethyl etherate as the catalyst, and dichloromethane as the solvent. Infrared (IR) spectroscopy as well as proton nuclear magnetic resonance (1HNMR) spectroscopy were adopted to characterize the structure of the synthetic copolyether. Then, polyurethane based on epoxycyclohexane-epoxychloropropane was prepared by the synthetic copolyether reacting with hexamethylene diisocyanate (HDI) trimer. The effect of the mass concentration of polyurethane on the tensile strength, elongation, folding endurance, and the tearing strength of paper samples were tested. When 10% polyurethane solution was applied to paper, not only were the mechanical properties greatly improved, but the gloss and brightness also changed slightly, which conformed to the principle of “repair as old”. The above results indicate that the synthetic polyurethane combines the advantages of epoxycyclohexane-poxychloropropane polyether polyol along with polyurethane, presenting excellent properties in paper reinforcement or conservation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhenxin Wang ◽  
Quanqing Zhang ◽  
Huali Shen ◽  
Pengyuan Yang ◽  
Xinwen Zhou

In recent years, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) plays an essential role in the analysis of polymers. To acquire a more reliable strategy for polymer profiling, we characterized four representative polymers including polyethylene glycol 6000, polyvinylpyrrolidone K12, polymer polyol KPOP-5040, and polyether polyol DL-4000. The preparation methods of these four polymer samples have been optimized from six aspects, including matrix, cationization reagent, solvent, mixing ratio of cationization reagent to polymer, mixing ratio of matrix to polymer, and laser intensity. After investigating the effects of seven commonly used matrices on the ionization efficiency of four polymers, trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene] malononitrile (DCTB) was found to be the only matrix suitable for the analysis of all the four polymers. Our experimental results suggested that different polymers showed a certain preference for different cationization reagents. For example, the polymer polyol KPOP-5040 was suitable for sodium iodide as the cationization reagent, while polyvinylpyrrolidone K12 was more suitable for silver trifluoroacetate (AgTFA). For the choice of solvent, tetrahydrofuran is a reagent with rapid evaporation and a wide range of dissolution which can achieve the best results for the analysis of four polymers. The optimized method was successfully applied to the identification of DSPE-PEG-NH2 with different polymerized degrees. This MALDI-TOF strategy potentially provided the supplementary function through the polymer’s application in biomedical and visible probing.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Baihui Ren ◽  
Jianjun Shen ◽  
Weitao Liu ◽  
Yingying Hu ◽  
Qing Cao

In this study, 16 groups of tests were designed by the orthogonal test method, and a PU grouting material was prepared, which can be used for the construction of sealing wall in mined-out area of coal mine. The basic properties of the material were measured. Firstly, the viscosity of four groups of samples with different polyether polyol contents was measured by a dynamic rheometer. Secondly, the uniaxial compressive strength of pure slurry samples and sand-containing samples was measured by a universal testing machine. Finally, the failure process of sand-containing samples was monitored by acoustic emission equipment. Through the above research and analysis, a PU grouting material with excellent performance has been obtained. That is, when the ratio of polyether triol:polyether tetraol:catalyst:surfactant:chain extender:plasticizer is 11 : 9 : 0.5 : 1.0 : 1.2 : 6.0, PU grouting material has higher injectability and ideal compressive strength, which has been proved in grouting experiments.


Sign in / Sign up

Export Citation Format

Share Document