Introduction to the Basics of Stress

Author(s):  
Karthik Selva Kumar Karuppasamy ◽  
Niranjan Sahoo ◽  
Balaji Selvaraj

For the design and development of new machine components, the researchers and engineers must have an extreme understanding of the stress, strain, and the basic equations/laws relating the stress to the strain. In this chapter, the authors show the basic concepts of stress developed in a component concerning the external loading and the loading concerning the body force. In this chapter, the following aspects were proposed to be briefly discussed: type of stresses, introduction to stress at particular node, stress equation relates the equilibrium of body, laws related to transformation of stress, states of stress, and sample solved problems related to the simple state of the stress system.

Author(s):  
Zoran Vrucinic

The future of medicine belongs to immunology and alergology. I tried to not be too wide in description, but on the other hand to mention the most important concepts of alergology to make access to these diseases more understandable, logical and more useful for our patients, that without complex pathophysiology and mechanism of immune reaction,we gain some basic insight into immunological principles. The name allergy to medicine was introduced by Pirquet in 1906, and is of Greek origin (allos-other + ergon-act; different reaction), essentially representing the reaction of an organism to a substance that has already been in contact with it, and manifested as a specific response thatmanifests as either a heightened reaction, a hypersensitivity, or as a reduced reaction immunity. Synonyms for hypersensitivity are: altered reactivity, reaction, hypersensitivity. The word sensitization comes from the Latin (sensibilitas, atis, f.), which means sensibility,sensitivity, and has retained that meaning in medical vocabulary, while in immunology and allergology this term implies the creation of hypersensitivity to an antigen. Antigen comes from the Greek words, anti-anti + genos-genus, the opposite, anti-substance substance that causes the body to produce antibodies.


Author(s):  
R. V. Chima

In this work computational models were developed and used to investigate applications of vortex generators (VGs) to turbomachinery. The work was aimed at increasing the efficiency of compressor components designed for the NASA Ultra Efficient Engine Technology (UEET) program. Initial calculations were used to investigate the physical behavior of VGs. A parametric study of the effects of VG height was done using 3-D calculations of isolated VGs. A body force model was developed to simulate the effects of VGs without requiring complicated grids. The model was calibrated using 2-D calculations of the VG vanes and was validated using the 3-D results. Then three applications of VGs to a compressor rotor and stator were investigated: 1. The results of the 3-D calculations were used to simulate the use of small casing VGs used to generate rotor preswirl or counterswirl. Computed performance maps were used to evaluate the effects of VGs. 2. The body force model was used to simulate large partspan splitters on the casing ahead of the stator. Computed loss buckets showed the effects of the VGs. 3. The body force model was also used to investigate the use of tiny VGs on the stator suction surface for controlling secondary flows. Near-surface particle traces and exit loss profiles were used to evaluate the effects of the VGs.


1943 ◽  
Vol 10 (2) ◽  
pp. A53-A61
Author(s):  
J. L. Meriam

Abstract The analysis of shells is an important subdivision of the general theory of elasticity, and its application is useful in the solution of engineering problems involving thin-walled structures. A common type of shell is one which possesses symmetry with respect to an axis of revolution. A theory for such shells has been developed by various investigators (1, 2, 3, 6) and applied to a few simple cases such as the cylindrical, spherical, and conical shapes. Boundary conditions, for the most part, have been simple static ones, and conditions of surface loading have been included in certain special cases. This paper extends the theory of axially symmetrical shells by including the body force of rotation about the axis and applies the results to the rotating conical shell. The analysis follows a pattern established by several investigators (1, 2, 3, 6) and for this reason is abbreviated to a considerable extent. Only where the inclusion of the body force makes elucidation advisable or where a slightly different method of approach is used are the steps presented in more detail.


Author(s):  
Ian J. Taylor ◽  
Andrew C. Robertson

On wet and windy days, the inclined cables of cable-stayed bridges can experience large amplitude, potentially damaging oscillations known as Rain-Wind Induced Vibration (RWIV). The phenomenon is believed to be the result of a complicated nonlinear interaction between rivulets of rain water that run down the cables and the wind loading on the cables due to the unsteady aerodynamic flow field. A numerical method has been developed at the University of Strathclyde, to simulate aspects of RWIV, the results of which can be used to assess the importance of the water rivulets on the instability. This combines a Discrete Vortex Method solver to determine the external flow field and unsteady aerodynamic loading and a pseudo-spectral solver based on lubrication theory to model the water on the surface of the body and which is used to determine the evolution and growth of the water rivulets under external loading. These two models are coupled to simulate the interaction between the aerodynamic field and the thin liquid film on a horizontal circular cylinder. The results illustrate the effects of various loading combinations, and importantly demonstrate rivulet formation in the range of angles previous research has indicated that these may suppress the Karman vortex and lead to a galloping instability. These rivulets are found to be of self limiting thickness in all cases.


Author(s):  
Benjamin Godard ◽  
Edouard De Jaeghere ◽  
Nabil Ben Nasr ◽  
Julien Marty ◽  
Raphael Barrier ◽  
...  

With the rise of ultra high bypass ratio turbofan and shorter and slimmer inlet geometries compared to classical architectures, designers face new challenges as nacelle and fan design cannot anymore be addressed independently. This paper reviews CFD methods developed to simulate inlet-fan interactions and suitable for industrial design cycles. In addition to the reference isolated fan and nacelle models, the methodologies evaluated in this study consist of two fan modeling approaches, an actuator disc and body-force source terms. The configuration is a modern turbofan with a high bypass ratio under cross-wind. Results are compared to experimental data. As to be predicted, the body-force modeling approach enables early inlet reattachment. In addition, it provides a representative flow deviation across the fan zone which enables performance and stability assessments.


Author(s):  
Vaibhav K. Arghode ◽  
Pramod Kumar ◽  
Yogendra Joshi ◽  
Thomas S. Weiss ◽  
Gary Meyer

Effective air flow distribution through perforated tiles is required to efficiently cool servers in a raised floor data center. We present detailed computational fluid dynamics (CFD) modeling of air flow through a perforated tile and its entrance to the adjacent server rack. The realistic geometrical details of the perforated tile, as well as of the rack are included in the model. Generally models for air flow through perforated tiles specify a step pressure loss across the tile surface, or porous jump model based on the tile porosity. An improvement to this includes a momentum source specification above the tile to simulate the acceleration of the air flow through the pores, or body force model. In both of these models geometrical details of tile such as pore locations and shapes are not included. More details increase the grid size as well as the computational time. However, the grid refinement can be controlled to achieve balance between the accuracy and computational time. We compared the results from CFD using geometrical resolution with the porous jump and body force model solution as well as with the measured flow field using Particle Image Velocimetry (PIV) experiments. We observe that including tile geometrical details gives better results as compared to elimination of tile geometrical details and specifying physical models across and above the tile surface. A modification to the body force model is also suggested and improved results were achieved.


2017 ◽  
Vol 1 (2) ◽  
pp. 516
Author(s):  
Ni Made Rahmi Putri

<p><em>Balinese comes in contact with 3 ideologic concepts such as: Tattwa (philosophy), Susila (behaviour), and Upacara (ritual). Those basic concepts will integrate and realize each other in Yadnya practices. There are 2 forms of Yadnya, such as Sekala and Niskala. Sekala is sacrifice by doing. While Niskala is sacrifice through offering to God with prabhavan.Yadnya requires infrastuctures symbolically, which is implemented through ritual. Ngaben Matuun is Yadnya which is included in Pitra Yadnya as a sacrifaction for pitara.</em></p><p><em>Symbolic communication aspects in ngaben matuun will be investigated through relevant aspects of communication in that ritual, such as intrapersonal communication, interpersonal communication, group communication, body symbol meaning, perpetuation meaning, social adaptation meaning,offerings symbolic meaning, palmyra palm leaves meaning in Kunduh meaning.</em></p><p><em>Ngaben ritual process is started by hitting kentongan 5 times, bathing the dead body using cendana water, corpse bathing ritual, pangerigkesan, buried. Matuun has some steps, such as mapekeling, nanceb salon, mapekeling ngaturang pelabaan, the main steps is ental burning and kunduh burying.</em></p><p><em>Ngaben ritual purpose is to bring unsure back to Panca Maha Butha and atma to pitara by breaking the relation with the body. The unsure will be back to Panca Maha Butha quicker through pengabenan. Through pengabenan, Balinese people believe that it can bring unsure back to Panca Maha Butha as well as doing child obligation for parents. Ngaben ritual has many functions, such as religious function, obligation function, social economical function, ethical function, and esthetical function.</em></p>


Author(s):  
Palak Saini ◽  
Jeff Defoe

Abstract Body force models enable inexpensive numerical simulations of turbomachinery. The approach replaces the blades with sources of momentum/energy. Such models capture a “smeared out” version of the blades’ effect on the flow, reducing computational cost. The body force model used in this paper has been widely used in aircraft engine applications. Its implementation for low speed, low solidity (few blades) turbomachines, such as automotive cooling fans, enables predictions of cooling flows and component temperatures without calibrated fan curves. Automotive cooling fans tend to have less than 10 blades, which is approximately 50% of blade counts for modern jet engine fans. The effect this has on the body force model predictions is unknown and the objective of this paper is to quantify how varying blade count affects the accuracy of the predictions for both uniform and non-uniform inflow. The key findings are that reductions in blade metal blockage combined with spanwise flow redistribution drives the body force model to more accurately predict work coefficient as the blade count decreases, and that reducing the number of blades is found to have negligible impacts on upstream influence and distortion transfer in non-uniform inflow until extremely low blade counts (such as 2) are applied.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Shinji Konosu

Assessment of multiple volumetric flaws is one of the most common problems relating to pressure vessels and piping components. Under the current fitness for service rules, such as ASME, BS, and so on, multiple volumetric flaws are usually recharacterized as an enveloping volumetric flaw (defined as a single larger volumetric flaw) as well as multiple cracklike flaws, following their assessment rules. However, the rules proposed in their codes will not often agree and their justification is unknown. Furthermore, they can provide unrealistic assessment in some cases. In this paper, the interaction between two differently sized nonaligned volumetric flaws such as local thin areas is clarified by applying the body force method. Unlike multiple cracklike flaws, the effect of biaxial stresses on the interaction is evident. Based on the interaction that indicates the magnification and shielding effects and reference stress solutions, a new procedure for multiple volumetric flaws is proposed for assessing the flaws in the p-M (pressure-moment) diagram, which is a simple assessment procedure for vessels with volumetric flaws.


Sign in / Sign up

Export Citation Format

Share Document