highly energetic materials
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 8)

H-INDEX

9
(FIVE YEARS 2)

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 1009 ◽  
Author(s):  
Marvin Schock ◽  
Stefan Bräse

The exceptional reactivity of the azide group makes organic azides a highly versatile family of compounds in chemistry and the material sciences. One of the most prominent reactions employing organic azides is the regioselective copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition with alkynes yielding 1,2,3-triazoles. Other named reactions include the Staudinger reduction, the aza-Wittig reaction, and the Curtius rearrangement. The popularity of organic azides in material sciences is mostly based on their propensity to release nitrogen by thermal activation or photolysis. On the one hand, this scission reaction is accompanied with a considerable output of energy, making them interesting as highly energetic materials. On the other hand, it produces highly reactive nitrenes that show extraordinary efficiency in polymer crosslinking, a process used to alter the physical properties of polymers and to boost efficiencies of polymer-based devices such as membrane fuel cells, organic solar cells (OSCs), light-emitting diodes (LEDs), and organic field-effect transistors (OFETs). Thermosets are also suitable application areas. In most cases, organic azides with multiple azide functions are employed which can either be small molecules or oligo- and polymers. This review focuses on nitrene-based applications of multivalent organic azides in the material and life sciences.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3494 ◽  
Author(s):  
Leonardo C. Pacheco-Londoño ◽  
José L. Ruiz-Caballero ◽  
Michael L. Ramírez-Cedeño ◽  
Ricardo Infante-Castillo ◽  
Nataly J. Gálan-Freyle ◽  
...  

In the fields of Security and Defense, explosive traces must be analyzed at the sites of the terrorist events. The persistence on surfaces of these traces depends on the sublimation processes and the interactions with the surfaces. This study presents evidence that the sublimation process of these traces on stainless steel (SS) surfaces is very different than in bulk quantities. The enthalpies of sublimation of traces of four highly energetic materials: triacetone triperoxide (TATP), 2,4-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT), and 1,3,5- trinitrohexahydro-s-triazine (RDX) deposited on SS substrates were determined by optical fiber coupled-grazing angle probe Fourier Transform Infrared (FTIR) Spectroscopy. These were compared with enthalpies of sublimation determined by thermal gravimetric analysis for bulk amounts and differences between them were found. The sublimation enthalpy of RDX was very different for traces than for bulk quantities, attributed to two main factors. First, the beta-RDX phase was present at trace levels, unlike the case of bulk amounts which consisted only of the alpha-RDX phase. Second, an interaction between the RDX and SS was found. This interaction energy was determined using grazing angle FTIR microscopy. In the case of DNT and TNT, bulk and traces enthalpies were statistically similar, but it is evidenced that at the level of traces a metastable phase was observed. Finally, for TATP the enthalpies were statistically identical, but a non-linear behavior and a change of heat capacity values different from zero was found for both trace and bulk phases.


Author(s):  
Leonardo C. Pacheco-Londoño ◽  
Jose L. Ruiz-Caballero ◽  
Michael L. Ramirez-Cedeño ◽  
Ricardo Infante-Castillo ◽  
Nataly J. Galan-Freyle ◽  
...  

The sublimation enthalpies of four highly energetic materials (HEMs): triacetone triperoxide (TATP), 2,4-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitrohexahydro-s-triazine (RDX) deposited on stainless steel (SS) substrates were determined by optical fibre coupled-grazing angle probe (GAP) FTIR spectroscopy and thermogravimetric analysis (TGA) for bulk crystaline HEMs samples. The desorption energy of RDX on SS was also studied using grazing angle FTIR microscopy. Metastable phases of 2,4-DNT and TNT were observed when deposited on SS, and their sublimation enthalpies values were obtained by GAP measurements and compared with those for the crystalline phases. The sublimation enthalpies for the alpha phase RDX was also determined by TGA measurements. A layer of crystalline beta phase RDX was observed on SS, and it's sublimation enthalpies was determinate by GAP. PLS calibration curves for the surface concentrations of RDX on SS were generated using GAP to determinate the surface concentration with time at different temperatures.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 638
Author(s):  
Chenggong Yang ◽  
Chufarov Marian ◽  
Jie Liu ◽  
Qi Di ◽  
Mingze Xu ◽  
...  

Aluminum nanoparticles hold promise for highly energetic materials and sustainable surface plasmonic materials. Most of the commercial Al nanoparticles are prepared via a high-throughput electrical explosion of wires method (up to 200 g h−1). However, the use of Al nanoparticles produced by an electrical explosion of wires is limited by their micrometer-sized aggregations and poor stability. Here, we use polystyrene with –COOH end-group to graft onto isolated Al nanoparticles and dramatically enhance their colloidal stability in various organic solvents. We further demonstrate that the polystyrene grafted Al nanoparticles can be doped into polystyrene films with high compatibility, leading to enhanced dielectric properties, such as higher dielectric constant, lower dielectric loss, and stronger breakdown strength. Moreover, the composite film can improve the moisture resistance of embedded Al nanoparticles.


2019 ◽  
Vol 43 (46) ◽  
pp. 18193-18202 ◽  
Author(s):  
Maximilian H. H. Wurzenberger ◽  
Benjamin R. G. Bissinger ◽  
Marcus Lommel ◽  
Michael S. Gruhne ◽  
Norbert Szimhardt ◽  
...  

This study shows the fine-tuning adjustment of copper(ii) complexes by trinitrophenolates and different N-aminotetrazole ligands to applicable highly energetic materials.


2018 ◽  
Vol 10 (50) ◽  
pp. 43857-43864 ◽  
Author(s):  
Moo-Kwang Shin ◽  
Myeong-Hoon Kim ◽  
Ga-Yun Kim ◽  
Byunghoon Kang ◽  
Joo Seung Chae ◽  
...  

2018 ◽  
Vol 18 (10) ◽  
pp. 5713-5726 ◽  
Author(s):  
Chaoyang Zhang ◽  
Fangbao Jiao ◽  
Hongzhen Li

Sign in / Sign up

Export Citation Format

Share Document