scholarly journals Reactive & Efficient: Organic Azides as Cross-Linkers in Material Sciences

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 1009 ◽  
Author(s):  
Marvin Schock ◽  
Stefan Bräse

The exceptional reactivity of the azide group makes organic azides a highly versatile family of compounds in chemistry and the material sciences. One of the most prominent reactions employing organic azides is the regioselective copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition with alkynes yielding 1,2,3-triazoles. Other named reactions include the Staudinger reduction, the aza-Wittig reaction, and the Curtius rearrangement. The popularity of organic azides in material sciences is mostly based on their propensity to release nitrogen by thermal activation or photolysis. On the one hand, this scission reaction is accompanied with a considerable output of energy, making them interesting as highly energetic materials. On the other hand, it produces highly reactive nitrenes that show extraordinary efficiency in polymer crosslinking, a process used to alter the physical properties of polymers and to boost efficiencies of polymer-based devices such as membrane fuel cells, organic solar cells (OSCs), light-emitting diodes (LEDs), and organic field-effect transistors (OFETs). Thermosets are also suitable application areas. In most cases, organic azides with multiple azide functions are employed which can either be small molecules or oligo- and polymers. This review focuses on nitrene-based applications of multivalent organic azides in the material and life sciences.

2021 ◽  
Vol 03 (02) ◽  
pp. 303-308
Author(s):  
Dror Ben Abba Amiel ◽  
Choongik Kim ◽  
Ori Gidron

Donor–acceptor–donor (DAD) triad systems are commonly applied as active materials in ambipolar organic field-effect transistors, organic solar cells, and NIR-emitting organic light-emitting diodes. Often, these triads utilize oligothiophenes as donors, whereas their oxygen-containing analogs, oligofurans, are far less studied in this setup. Here we introduce a family of DAD triads in which the donors are oligofurans and the acceptor is benzothiadiazole. In a combined computational and experimental study, we show that these triads display optical bandgaps similar to those of their thiophene analogs, and that a bifuran donor is sufficient to produce emission in the NIR spectral region. The presence of a central acceptor unit increases the photostability of oligofuran-based DAD systems compared with parent oligofurans of the similar length.


2021 ◽  
Vol 25 ◽  
Author(s):  
Fabiana Pandolfi ◽  
Martina Bortolami ◽  
Marta Feroci ◽  
Leonardo Mattiello ◽  
Vincenzo Scarano ◽  
...  

: Thiophene derivatives, either "small molecules," oligomers or polymers, play a role of primary importance among organic semiconductors. Therefore they have numerous and different technological applications in the field of Organic Electronics. For this reason, thiophene-based materials are found in devices such as organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs), organic solar cells (OSCs), organic photodetectors, and many others. Oligothiophenes and polythiophenes have in common excellent charge transport properties and synthetic procedures that are now well established. Furthermore, oligothiophenes do not possess the intrinsic disadvantages of polythiophenes, such as the lack of well-defined structures and the inevitable presence of impurities. Electrochemistry can give a significant contribution to the field of oligothiophenes not only by allowing the determination of the highest-occupied molecular orbital (HOMO) and the lowest-unoccupied molecular orbital (LUMO) energy levels by the means of cyclic voltammetry (CV), but also rendering oligothiophenes syntheses more expeditious in comparison with the classical organic ones. This review outlines the application of electrochemistry techniques to the synthesis of oligothiophene derivatives.


2010 ◽  
Vol 6 ◽  
pp. 830-845 ◽  
Author(s):  
Bernd Tieke ◽  
A Raman Rabindranath ◽  
Kai Zhang ◽  
Yu Zhu

Research activities in the field of diketopyrrolopyrrole (DPP)-based polymers are reviewed. Synthetic pathways to monomers and polymers, and the characteristic properties of the polymers are described. Potential applications in the field of organic electronic materials such as light emitting diodes, organic solar cells and organic field effect transistors are discussed.


2021 ◽  
Author(s):  
Yankai Zhou ◽  
Weifeng Zhang ◽  
Gui Yu

This review highlights the recent structural evolution of lactam- and imide-functionalized polymers applied in organic field-effect transistors and organic solar cells.


2018 ◽  
Vol 5 (8) ◽  
pp. 180868
Author(s):  
Lanchao Ma ◽  
Shuixing Dai ◽  
Xiaowei Zhan ◽  
Xinyang Liu ◽  
Yu Li

Organic heterojunction is indispensable in organic electronic devices, such as organic solar cells, organic light-emitting diodes and so on. Fabrication of core–shell nanostructure provides a feasible and novel way to prepare organic heterojunction, which is beneficial for miniaturization and integration of organic electronic devices. Fabrication of nanotubes which constitute the core–shell structure in large quantity is the key for the realization of application. In this work, a simple and convenient method to prepare nanotubes using conjugated copolymer of perylene diimide and dithienothiophene (P(PDI-DTT)) was demonstrated. The relationship between preparation conditions (solvent atmosphere, solution concentration and pore diameter of templates) and morphology of nanostructure was studied systematically. P(PDI-DTT) nanotubes could be fabricated in regular shape and large quantity by preparing the solution with appropriate concentration and placing anodic aluminium oxide template with nanopore diameter of 200 nm in the solvent atmosphere. The tubular structure was confirmed by scanning electron microscopy. P(PDI-DTT) nanotubes exhibited electron mobility of 0.02 cm 2 V –1 s –1 in field-effect transistors under ambient condition. Light-emitting nanostructures were successfully fabricated by incorporating tetraphenylethylene into polymer nanotubes.


2019 ◽  
Vol 61 (2) ◽  
pp. 388
Author(s):  
А.Н. Алешин ◽  
И.П. Щербаков ◽  
Д.А. Кириленко ◽  
Л.Б. Матюшкин ◽  
В.А. Мошников

Abstract—Light-emitting organic field-effect transistors (LE-FETs) on the basis of composite films that consist of perovskite nanocrystals (CsPbBr_3) embedded in a matrix of conjugated polymer—polyfluorene (PFO)—have been obtained, and their electrical and optical properties have been investigated. Output and transfer current-voltage characteristics (I-Vs) of FETs based on PFO : CsPbBr_3 films (component ratio 1 : 1) have a slight hysteresis at temperatures of 100–300 K and are characteristic of hole transport. The hole mobility is ∼3.3 and ∼1.9 cm^2/(V s) at the modes of the saturation and low fields, respectively, at 250 K and reaches ∼5 cm^2/(V s) at 100 K. It has been shown that the application of pulsed voltage to LE-FETs based on PFO : CsPbBr_3 can reduce the ionic conductivity and provide electroluminescence in this structure at 300 K.


2019 ◽  
Vol 7 (47) ◽  
pp. 15035-15041 ◽  
Author(s):  
Tianchai Chooppawa ◽  
Supawadee Namuangruk ◽  
Hiroshi M. Yamamoto ◽  
Vinich Promarak ◽  
Paitoon Rashatasakhon

Four derivatives of benzotriazatruxene are synthesized and tested as hole-transporting materials in organic field-effect transistors and organic light-emitting diodes.


Sign in / Sign up

Export Citation Format

Share Document