scholarly journals Arthropod fauna on the abaxial and adaxial surfaces of Acacia mangium (Fabaceae) leaves

2023 ◽  
Vol 83 ◽  
Author(s):  
G. N. Gomes ◽  
G. L. D. Leite ◽  
M. A. Soares ◽  
R. E. M. Guanãbens ◽  
P. G. Lemes ◽  
...  

Abstract Acacia mangium (Willd., 1806) (Fabales: Fabaceae) is a fast growing, rustic, pioneer species, with potential to fix nitrogen, and for programs to recover degraded areas. The objective was to evaluate the distribution and the functional diversity of interactions and the K-dominance of arthropod groups on A. mangium saplings. The number of individuals of eleven species of phytophagous insects, three bee species, and fourteen natural enemy species were highest on the adaxial leaf surface of this plant. Abundance, diversity and species richness of phytophagous insects and natural enemies, and abundance and species richness of pollinators were highest on the adaxial A. mangium leaf surface. The distribution of five species of sap-sucking hemipterans and six of protocooperating ants (Hymenoptera), with positive interaction between these groups, and three bee species (Hymenoptera) were aggregated on leaves of A. mangium saplings. Aethalion reticulatum (L.) (Hemiptera: Aethalionidae) and Bemisia sp. (Hemiptera: Aleyrodidae); Brachymyrmex sp. and Camponotus sp. (Hymenoptera: Formicidae); and Trigona spinipes Fabricius (Hymenoptera: Apidae) were the most dominant phytophagous insects, natural enemies, and pollinators, respectively, on A. mangium leaves. Knowledge of preferred leaf surfaces could help integrated pest management programs.

2023 ◽  
Vol 83 ◽  
Author(s):  
L. F. Silva ◽  
F. W. S. Silva ◽  
G. L. Demolin-Leite ◽  
M. A. Soares ◽  
P. G. Lemes ◽  
...  

Abstract Acacia auriculiformis A. Cunn. Ex Benth. (Fabaceae), a non-native pioneer species in Brazil with fast growth and rusticity, is used in restoration programs. Our goal was to assess during a 24-month survey the pattern of arthropods (phytophagous insects, bees, spiders, and predator insects) on the leaf surfaces of A. auriculiformis saplings. Fourteen species of phytophagous, two of bees and eleven of predators were most abundant on the adaxial surface. The values of the ecological indexes (abundance, diversity, and species richness) and the rarefaction, and k-dominance curves of phytophagous, bees and arthropod predators were highest on the adaxial leaf surface of A. auriculiformis. The k-dominance and abundance of Aleyrodidae (Hemiptera) (both leaf surfaces), the native stingless bee Tetragonisca angustula Latreille (Hymenoptera: Apidae) (both leaf surfaces) and the ant Brachymyrmex sp. (adaxial surface) and Pheidole sp. (Hymenoptera: Formicidae) (abaxial surface) were the highest between the taxonomic groups of phytophagous, bees, and predators, respectively on A. auriculiformis saplings. The ecological indexes and rarefaction, abundance, and k-dominance curves of phytophagous insects, bees, and predators were highest on the adaxial leaf surface. The preference of phytophagous insects for the adaxial leaf surface is probably due to the lower effort required to move on this surface. Understanding the arthropod preferences between leaf surfaces may help to develop sampling and pest management plans for the most abundant phytophagous insects on A. auriculiformis saplings. Also, knowledge on the preference pattern of bees and predators may be used to favour their conservation.


2021 ◽  
Author(s):  
Noa Ligot ◽  
Benoît Pereira ◽  
Patrick Bogaert ◽  
Guillaume Lobet ◽  
Pierre Delmelle

<p>Volcanic ashfall negatively affects crops, causing major economic losses and jeopardising the livelihood of farmers in developing countries where agriculture is at volcanic risk. Ash on plant foliage reduces the amount of incident light, thereby limiting photosynthesis and plant yield. An excessive ash load may also result in mechanical plant damages, such as defoliation and breakage of the stem and twigs. Characterising crop vulnerability to ashfall is critical to conduct a comprehensive volcanic risk analysis. This is normally done by describing the relationship between the ash deposit thickness and the corresponding reduction in crop yield, i.e. a fragility function. However, ash depth measured on the ground surface is a crude proxy of ash retention on plant foliage as this metrics neglects other factors, such as ash particle size, leaf pubescence and condition of humidity at leaf surfaces, which are likely to influence the amount of ash that stays on leaves.</p><p>Here we report the results of greenhouse experiments in which we measured the percentage of leaf surface area covered by ash particles for one hairy leaf plant (tomato, Solanum lycopersicum L.) and one hairless leaf plant (chilli pepper, Capsicum annuum L.) exposed to simulated ashfalls. We tested six particle size ranges (≤ 90, 90-125, 125-250, 250-500, 500-1000, 1000-2000 µm) and two conditions of humidity at leaf surfaces, i.e. dry and wet. Each treatment consisted of 15 replicates. The tomato and chilli pepper plants exposed to ash were at the seven- and eight-leaf stage, respectively. An ash load of ~570 g m<sup>-2 </sup>was applied to each plant using a homemade ashfall simulator. We estimated the leaf surface area covered by ash from pictures taken before and immediately after the simulated ashfall. The ImageJ software was used for image processing and analysis.</p><p>Our results show that leaf coverage by ash increases with decreasing particle size. Exposure of tomato and chilli pepper to ash ≤ 90 μm always led to ~90% coverage of the leaf surface area. For coarser particles sizes (i.e. between 125 and 500 µm) and dry condition at leaf surfaces, a significantly higher percentage (on average 29 and 16%) of the leaf surface area was covered by ash in the case of tomato compared to chilli pepper, highlighting the influence of leaf pubescence on ash retention. In addition, for particle sizes between 90 and 500 µm, wetting of the leaf surfaces prior to ashfall enhanced the ash cover by 19 ± 5% and 34 ± 11% for tomato and chilli pepper, respectively.</p><p>These findings highlight that ash deposit thickness alone cannot describe the hazard intensity accurately. A thin deposit of fine ash (≤ 90 µm) will likely cover the entire leaf surface area, thereby eliciting a disproportionate effect on plant foliage compared to a thicker but coarser deposit. Similarly, for a same ash depth, leaf pubescence and humid conditions at the leaf surfaces will enhance ash retention, thereby increasing the likelihood of damage. Our study will contribute to improve the reliability of crop fragility functions used in volcanic risk assessment.</p>


2009 ◽  
Vol 72 (10) ◽  
pp. 2028-2037 ◽  
Author(s):  
GUODONG ZHANG ◽  
LI MA ◽  
LARRY R. BEUCHAT ◽  
MARILYN C. ERICKSON ◽  
VANESSA H. PHELAN ◽  
...  

Survival and internalization characteristics of Escherichia coli O157:H7 in iceberg, romaine, and leaf lettuce after inoculation of leaf surfaces and soil were determined. A five-strain mixture of E. coli O157:H7 in water and cow manure extract was used as an inoculum for abaxial and adaxial sides of leaves at populations of 6 to 7 log and 4 log CFU per plant. The five strains were individually inoculated into soil at populations of 3 and 6 log CFU/g. Soil, leaves, and roots were analyzed for the presence and population of E. coli O157:H7. Ten (4.7%) of 212 samples of leaves inoculated on the adaxial side were positive for E. coli O157:H7, whereas 38 (17.9%) of 212 samples inoculated on the abaxial side were positive. E. coli O157:H7 survived for at least 25 days on leaf surfaces, with survival greater on the abaxial side of the leaves than on the adaxial side. All 212 rhizosphere samples and 424 surface-sanitized leaf and root samples from plants with inoculated leaves were negative for E. coli O157:H7, regardless of plant age at the time of inoculation or the location on the leaf receiving the inoculum. The pathogen survived in soil for at least 60 days. Five hundred ninety-eight (99.7%) of 600 surface-sanitized leaf and root samples from plants grown in inoculated soil were negative for E. coli O157:H7. Internalization of E. coli O157:H7 in lettuce leaves and roots did not occur, regardless of the type of lettuce, age of plants, or strain of E. coli O157:H7.


2007 ◽  
Vol 50 (6) ◽  
pp. 1033-1042 ◽  
Author(s):  
Yzel Rondon Súarez ◽  
Sabrina Bigatão Valério ◽  
Karina Keyla Tondado ◽  
Alexandro Cezar Florentino ◽  
Thiago Rota Alves Felipe ◽  
...  

The influence of spatial, temporal and environmental factors on fish species diversity in headwater streams in Paraguay and Paraná basins, Brazil was examined. A total of 4,605 individuals were sampled, distributed in 60 species. The sampled streams in Paraná basin presented a larger total species richness (42) than Paraguay streams (40). However the estimated richness was larger in Paraguay basin (53) than Paraná streams (50). The streams of Paraná basin had a greater mean species richness and evenness, while more individuals per sample were found in the Paraguay basin. Difference between the sub-basins were found in the Paraguay basin, while for the basin of Paraná, richness and evenness vary significantly between the sub-basins, but the number of individuals varied seasonally. The most important environmental factors to species diversity and abundance were altitude, water temperature, stream width and stream depth for both the basins.


2017 ◽  
Vol 33 (3) ◽  
pp. 197-204 ◽  
Author(s):  
Walter Santos de Araújo

Abstract:The present study aims to investigate the effects of vegetation structure (plant abundance and height) and soil characteristics (soil organic matter and macronutrients) on insect gall richness, and determine the extent to which these effects are mediated by the indirect effects of plant species richness. The study was performed in forty-nine 100-m2 savanna plots in Parque Nacional das Emas (Brazil) and sampled a total of 985 individual plants of 71 plant species and 97 insect gall morphotypes. Cecidomyiidae (Diptera) induced the most insect galls (38.1%), and the plant family Myrtaceae had the greatest richness of insect gall morphotypes (16). Path analysis of plant abundance, plant height, soil macronutrients, soil organic matter and plant species richness explained 73% of insect gall richness. The results show that soil macronutrient quantity has a direct positive effect on insect gall richness, whereas plant abundance and plant height had only indirect positive effects on insect gall richness via the increase in plant species richness. These findings showed that both plant-related and environment-related factors are important to induce insect gall richness in Neotropical savannas, and that plant species richness should be taken into account to determine the richness of insect galls.


2019 ◽  
Vol 5 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Jukka Suhonen ◽  
Jukka Jokimäki

Abstract Temporal dynamics of local assemblages depend on the species richness and the total abundance of individuals as well as local departure and arrival rates of species. We used urban bird survey data collected from the same 31 study plots and methods during three winters (1991–1992; 1999–2000 and 2009–2010) to analyze the temporal relationship between bird species richness and total number of individuals (abundance). We also evaluated local departures and arrivals of species in each assemblage. In total, 13,812 individuals of 35 species were detected. The temporal variation in bird species richness followed the variation in the total number of individuals. The numbers of local departure and arrival events were similar. Also, the mean number of individuals of the recently arrived species (8.6) was almost the same as the mean number of individuals of the departed species (8.2). Risk of species departure was inversely related to number of individuals. Local species richness increased by one species when the total abundance of individuals increased by around 125 individuals and vice versa. Our results highlight the important role of local population departures and arrivals in determining the local species richness-abundance dynamics in human-dominated landscapes. Local species richness patterns depend on the total number of individuals as well as both the departure-arrival dynamics of individual species as well as the dynamics of all the species together. Our results support the more individuals hypothesis, which suggests that individual-rich assemblages have more species.


Zootaxa ◽  
2011 ◽  
Vol 2988 (1) ◽  
pp. 37 ◽  
Author(s):  
GRAŻYNA SOIKA ◽  
MARCIN KOZAK

The purpose of this research was to investigate both the qualitative and quantitative morphological traits of Phytoptus tetratrichus Nalepa 1890 populations inhabiting three different lime tree species: Tilia cordata Mill., Tilia tomentosa Moench and Tilia americana L.. Morphological characters of two populations collected from T. cordata and T. tomentosa over three successive growing seasons were compared with the aid of canonical variate analysis. Additionally, individuals occurring on T. americana in a consecutive year were also studied. Protogyne and deutogyne females were differentiated using both qualitative and quantitative traits. For deutogyne females, individuals from all combinations of Tilia species × year (which constituted populations for comparison) clearly differed from each other. However, the differences between populations from T. cordata and T. tomentosa were less distinct. For protogyne females, observed differences were clearly visible. The between-season variation in morphological characters such as body size appeared to be quite large, indicating that morphological analysis based on observations from only a single season can be inaccurate. Deutogyne females of P. tetratrichus were observed to cause various types of damage symptoms: leaf-roll galls along the leaf edges of T. cordata; small round erinea on the lower leaf surface and small wart-like galls on the upper leaf surface of T. tomentosa; fingerlike galls on both leaf surfaces of T. americana.


2020 ◽  
Vol 6 (4) ◽  
pp. 243-259 ◽  
Author(s):  
Michael Staab ◽  
Andreas Schuldt

Abstract Purpose of Review Natural enemies are an important component for forest functioning. By consuming herbivores, they can be effective top-down regulators of potential pest species. Tree mixtures are generally expected to have larger predator and parasitoid populations compared to monocultures. This assumption is based on the “enemies” hypothesis, a classical ecological concept predicting a positive relationship between plant diversity (and complexity) and natural enemies, which, in turn, should increase top-down control in more diverse environments. However, the “enemies” hypothesis has mostly been tested and supported in relatively simple agricultural ecosystems. Until recently, research in forests was sparse. We summarize the upcoming knowledge-base for forests and identify forest characteristics likely shaping relationships between tree diversity, natural enemies (abundance, species richness, diversity), and top-down control. We further identify possible implications for mixed species forestry and key knowledge gaps. Recent Findings Tree diversity (almost exclusively quantified as tree species richness) does not consistently increase enemy abundance, diversity, or result in herbivore control. Tests of the “enemies” hypothesis are largely based on aboveground natural enemies (mainly generalists) and have highly variable outcomes across taxa and study systems, sometimes even finding a decrease in predator diversity with increasing tree diversity. Recurrent effects of tree species identity and composition indicate that a closer focus on tree functional and phylogenetic diversity might help to foster a mechanistic understanding of the specific circumstances under which tree diversity can promote top-down control. Summary Our review suggests that the “enemies” hypothesis may not unambiguously apply to forests. With trees as structurally complex organisms, even low-diversity forests can maintain a high degree of habitat heterogeneity and may provide niches for many predator and parasitoid species, possibly blurring correlations between tree and natural enemy diversity. Several further factors, such as latitude, identity effects, intraguild predation, or functional and phylogenetic components of biodiversity, may confound the predictions of the “enemies” hypothesis. We identify topics needing more research to fully understand under which conditions tree diversity increases natural enemy diversity and top-down control—knowledge that will be crucial for forest management.


2012 ◽  
Vol 78 (6) ◽  
pp. 1752-1764 ◽  
Author(s):  
Ryan C. Fink ◽  
Elaine P. Black ◽  
Zhe Hou ◽  
Masayuki Sugawara ◽  
Michael J. Sadowsky ◽  
...  

ABSTRACTAn increasing number of outbreaks of gastroenteritis recently caused byEscherichia coliO157:H7 have been linked to the consumption of leafy green vegetables. Although it is known thatE. colisurvives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identifyE. coligenes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparingE. coliK-12, a model system, andE. coliO157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, includingtnaA(33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsAandybiM) and curli production (csgAandcsgB) were significantly upregulated inE. coliK-12 and O157:H7. BothcsgAandbhsA(ycfR) mutants were impaired in the long-term colonization of the leaf surface, but onlycsgAmutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction ofE. coliK-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation.


1994 ◽  
Vol 126 (S169) ◽  
pp. 181-220 ◽  
Author(s):  
Albert T. Finnamore

AbstractThe Wagner Natural Area, located 8 km west of Edmonton, Alberta (53°34′N 113°47′W), contains a boreal spring fen estimated to be 4700 years old. The site was selected in 1985 for a survey of its arthropod fauna. A transect of the site from marl pools through fen, edge effect, and treed swamp was sampled for arthropods using pan and Malaise traps. Specialized microhabitats outside the transect were identified and sampled using pan traps. The Wagner fen samples contain 2181 species of arthropods contributing to a total known biota of 2905 species in the peatland. Of those, 1410 are Hymenoptera. Although seven other peatland studies are known, the inability of systematists to name most species prevents direct comparisons among peatlands. Data obtained from the Hymenoptera collections at Wagner demonstrate a progression in species richness as one approaches the forest–fen edge from either fen or forest. A large proportion [30% (382 species)] of Hymenoptera species, termed the aerial component, is active both in the forest–fen edge and in the fen. The aerial component is a highly mobile, at least locally transient, but often uncollected component of peatland ecosystems. Presence of the aerial component is probably associated with habitat structure. Those peatlands possessing more complex vegetation architecture have greater proportions of aerial species. About 80% of Hymenoptera at Wagner are parasitoids, most of which attack larva of holometabolous hosts. Based on the host groups sought by parasitoids and the ratio of parasitoid species per host species, the fen is estimated to contain about 6000 species of arthropods.


Sign in / Sign up

Export Citation Format

Share Document