amphibian chytrid fungus
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 29)

H-INDEX

27
(FIVE YEARS 3)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262561
Author(s):  
Olivia Wetsch ◽  
Miranda Strasburg ◽  
Jessica McQuigg ◽  
Michelle D. Boone

Emerging infectious diseases are increasing globally and are an additional challenge to species dealing with native parasites and pathogens. Therefore, understanding the combined effects of infectious agents on hosts is important for species’ conservation and population management. Amphibians are hosts to many parasites and pathogens, including endemic trematode flatworms (e.g., Echinostoma spp.) and the novel pathogenic amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Our study examined how exposure to trematodes during larval development influenced the consequences of Bd pathogen exposure through critical life events. We found that prior exposure to trematode parasites negatively impacted metamorphosis but did not influence the effect of Bd infection on terrestrial growth and survival. Bd infection alone, however, resulted in significant mortality during overwintering—an annual occurrence for most temperate amphibians. The results of our study indicated overwintering mortality from Bd could provide an explanation for enigmatic declines and highlights the importance of examining the long-term consequences of novel parasite exposure.


2021 ◽  
Author(s):  
Zachary Gajewski ◽  
Lisa A. Stevenson ◽  
David A. Pike ◽  
Elizabeth A. Roznik ◽  
Ross A. Alford ◽  
...  

2021 ◽  
Author(s):  
Allison Q Byrne ◽  
Anthony W Waddle ◽  
Veronica Saenz ◽  
Michel Ohmer ◽  
Jef R Jaeger ◽  
...  

Host-pathogen specificity can arise from certain selective environments mediated by both the host and pathogen. Therefore, understanding the degree to which host species identity is correlated with pathogen genotype can help reveal historical host-pathogen dynamics. One animal disease of particular concern is chytridiomycosis, typically caused by the global panzootic lineage of the amphibian chytrid fungus ( Batrachochytrium dendrobatidis , Bd), termed the Bd-GPL. This pathogen lineage has caused devastating declines in amphibian communities around the world. However, the origin of Bd-GPL and the fine-scale transmission dynamics of this lineage have remained a mystery. This is especially the case in North America where Bd-GPL is widespread, but disease outbreaks occur sporadically. Herein, we use Bd genetic data collected throughout the United States from amphibian skin swab and cultured isolate samples to investigate Bd genetic patterns. We highlight two case studies in Pennsylvania and Nevada where Bd-GPL genotypes are strongly correlated with host species identity. Specifically, in some localities bullfrogs ( Rana catesbeiana ) are infected with Bd-GPL lineages that are distinct from those infecting other sympatric amphibian species. Overall, we reveal a previously unknown association of Bd genotype with host species and identify the eastern United States as a Bd diversity hotspot and potential ancestral population for Bd-GPL.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaime Bosch ◽  
Barbora Thumsová ◽  
Naiara López-Rojo ◽  
Javier Pérez ◽  
Alberto Alonso ◽  
...  

AbstractMicroplastics (MPs), a new class of pollutants that pose a threat to aquatic biodiversity, are of increasing global concern. In tandem, the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) causing the disease chytridiomycosis is emerging worldwide as a major stressor to amphibians. We here assess whether synergies exist between this infectious disease and MP pollution by mimicking natural contact of a highly susceptible species (midwife toads, Alytes obstetricans) with a Bd-infected reservoir species (fire salamanders, Salamandra salamandra) in the presence and absence of MPs. We found that MP ingestion increases the burden of infection by Bd in a dose-dependent manner. However, MPs accumulated to a greater extent in amphibians that were not exposed to Bd, likely due to Bd-damaged tadpole mouthparts interfering with MP ingestion. Our experimental approach showed compelling interactions between two emergent processes, chytridiomycosis and MP pollution, necessitating further research into potential synergies between these biotic and abiotic threats to amphibians.


2021 ◽  
Author(s):  
Rebecca J. Webb ◽  
Alexandra A. Roberts ◽  
Stephen Wylie ◽  
Tiffany Kosch ◽  
Luís Felipe Toledo ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Deanna H. Olson ◽  
Kathryn L. Ronnenberg ◽  
Caroline K. Glidden ◽  
Kelly R. Christiansen ◽  
Andrew R. Blaustein

The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) is a skin pathogen that can cause the emerging infectious disease chytridiomycosis in susceptible species. It has been considered one of the most severe threats to amphibian biodiversity. We aimed to provide an updated compilation of global Bd occurrences by host taxon and geography, and with the larger global Bd dataset we reanalyzed Bd associations with environmental metrics at the world and regional scales. We also compared our Bd data compilation with a recent independent assessment to provide a more comprehensive count of species and countries with Bd occurrences. Bd has been detected in 1,375 of 2,525 (55%) species sampled, more than doubling known species infections since 2013. Bd occurrence is known from 93 of 134 (69%) countries at this writing; this compares to known occurrences in 56 of 82 (68%) countries in 2013. Climate-niche space is highly associated with Bd detection, with different climate metrics emerging as key predictors of Bd occurrence at regional scales; this warrants further assessment relative to climate-change projections. The accretion of Bd occurrence reports points to the common aims of worldwide investigators to understand the conservation concerns for amphibian biodiversity in the face of potential disease threat. Renewed calls for better mitigation of amphibian disease threats resonate across continents with amphibians, especially outside Asia. As Bd appears to be able to infect about half of amphibian taxa and sites, there is considerable room for biosecurity actions to forestall its spread using both bottom-up community-run efforts and top-down national-to-international policies. Conservation safeguards for sensitive species and biodiversity refugia are continuing priorities.


EcoHealth ◽  
2021 ◽  
Author(s):  
Sofía Granados-Martínez ◽  
Héctor Zumbado-Ulate ◽  
Catherine L. Searle ◽  
Brunno F. Oliveira ◽  
Adrián García-Rodríguez

2021 ◽  
Vol 8 ◽  
Author(s):  
Jaime Bosch ◽  
Amparo Mora-Cabello de Alba ◽  
Susana Marquínez ◽  
Stephen J. Price ◽  
Barbora Thumsová ◽  
...  

Amphibians are the most highly threatened vertebrates, and emerging pathogens are a serious threat to their conservation. Amphibian chytrid fungi and the viruses of the Ranavirus genus are causing disease outbreaks worldwide, including in protected areas such as National Parks. However, we lack information about their effect over amphibian populations in the long-term, and sometimes these mortality episodes are considered as transient events without serious consequences over longer time-spans. Here, we relate the occurrence of both pathogens with the population trends of 24 amphibian populations at 15 sites across a national Park in northern Spain over a 14-year period. Just one out 24 populations presents a positive population trend being free of both pathogens, while seven populations exposed to one or two pathogens experienced strong declines during the study period. The rest of the study populations (16) remain stable, and these tend to be of species that are not susceptible to the pathogen present or are free of pathogens. Our study is consistent with infectious diseases playing an important role in dictating amphibian population trends and emphasizes the need to adopt measures to control these pathogens in nature. We highlight that sites housing species carrying Ranavirus seems to have experienced more severe population-level effects compared to those with the amphibian chytrid fungus, and that ranaviruses could be just as, or more important, other more high-profile amphibian emerging pathogens.


Author(s):  
Andrea Costa ◽  
Lorenzo Dondero ◽  
Giorgia Allaria ◽  
Bryan Nelson Morales Sanchez ◽  
Giacomo Rosa ◽  
...  

AbstractThe emerging amphibian disease, Batrachochytrium dendrobatidis (Bd), is driving population declines worldwide and even species extinctions in Australia, South and Central America. In order to mitigate effects of Bd on amphibian populations, high-exposed areas should be identified at the local scale and effective conservation measures should be planned at the national level. This assessment is actually lacking in the Mediterranean basin, and in particular in Italy, one of the most relevant amphibian diversity hotspots in the entire region. In this study, we reviewed the available information on Bd in Italy, and conducted a 5-year molecular screening on 1274 individual skin swabs belonging to 18 species. Overall, we found presence of Bd in 13 species and in a total of 56 known occurrence locations for peninsular Italy and Sardinia. We used these occurrence locations and climate data to model habitat suitability of Bd for current and future climatic scenarios. We then employed electric circuit theory to model landscape permeability to the diffusion of Bd, using a resistance map. With this procedure, we were able to model, for the first time, the diffusion pathways of Bd at the landscape scale, characterising the main future pathways towards areas with a high probability of Bd occurrence. Thus, we identified six national protected areas that will become pivotal for a nationally-based strategic plan in order to monitor, mitigate and possibly contrast Bd diffusion in Italy.


Sign in / Sign up

Export Citation Format

Share Document