adapter molecule
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 20)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 18 ◽  
Author(s):  
Anna Mengr ◽  
Lucie Hrubá ◽  
Aneta Exnerová ◽  
Martina Holubová ◽  
Andrea Popelová ◽  
...  

Background: Prolactin-releasing peptide (PrRP) is a potential drug for the treatment of obesity and associated type 2 diabetes mellitus (T2DM) due to its strong anorexigenic and antidiabetic properties. In our recent study, the lipidized PrRP analog palm11-PrRP31 was proven to exert beneficial effects in APP/PS1 mice, a model of Alzheimer´s disease (AD)-like amyloid-β (Aβ) pathology, reducing the Aβ plaque load, microgliosis and astrocytosis in the hippocampus and cortex. Objective: In this study, we focused on the neuroprotective and anti-inflammatory effects of palm11-PrRP31 and its possible impact on synaptogenesis in the cerebellum of APP/PS1 mice, because others have suggested that cerebellar Aβ plaques contribute to cognitive deficits in AD. Methods: APP/PS1 mice were treated subcutaneously with palm11-PrRP31 for 2 months, then immunoblotting and immunohistochemistry were used to quantify pathological markers connected to AD, compared to control mice. Results: In the cerebella of 8 months old APP/PS1 mice, we found widespread Aβ plaques surrounded by activated microglia detected by ionized calcium-binding adapter molecule (Iba1), but no increase in astrocytic marker glial fibrillary acidic protein (GFAP) compared to controls. Interestingly, no difference in both presynaptic markers syntaxin1A and postsynaptic marker spinophilin was registered between APP/PS1 and control mice. Palm11-PrRP31 treatment significantly reduced the Aβ plaque load and microgliosis in the cerebellum. Furthermore, palm11-PrRP31 increased synaptogenesis and attenuated neuroinflammation and apoptosis in the hippocampus of APP/PS1 mice. Conclusion: These results suggest palm11-PrRP31 is a promising agent for the treatment of neurodegenerative disorders.


2021 ◽  
Author(s):  
Xing Cheng ◽  
Zhengran Yu ◽  
Wenjie Hu ◽  
Jiacheng Chen ◽  
Wei Chen ◽  
...  

Abstract Background Neuropathic pain (NP) is a frequent finding in patients diagnosed with spinal cord injuries (SCIs). We aimed to investigate the effects of voluntary exercise on NP after SCI and to elucidate its potential mechanisms. MethodsA rat model of post-SCI NP induced by compression of the posterior or lateral cervical spinal cord was used to evaluate the effects of voluntary exercise by measuring the bilateral withdrawal of the hind paws using the Von Frey filament and Hargreaves tests. The place escape/avoid paradigm was used to evaluate supraspinal pain processing and somatosensory evoked potentials (SEPs) were used to examine disturbances in proprioception. Locomotor function was evaluated using Basso, Beattie, and Bresnahan (BBB) scoring. Pathologic findings in hematoxylin and eosin-stained tissue and magnetic resonance imaging were used to evaluate the morphological changes after SCI. The lesion size within the cervical spinal cord was evaluated by staining with Eriochrome cyanine R. Quantitative polymerase chain reaction and immunohistochemistry were used to assess the expression of calcitonin gene-related peptide (CGRP) and ionized calcium-binding adapter molecule 1 (Iba-1) in the lumbar dorsal horns. ResultsAll injured rats developed mechanical hypersensitivity, hyposensitivity, and thermal hyperalgesia in the contralateral hind paws at one week post-injury. Rats that underwent lateral compression injury developed NP in the ipsilateral hind paws one week later than rats with a posterior compression injury. Our findings revealed that voluntary exercise ameliorated mechanical allodynia and thermal hyperalgesia, and significantly improved proprioception as measured by SEP, but had no impact on mechanical hypoalgesia or motor recovery and provided no significant neuroprotection after recovery from an acute SCI. SCI-induced NP was accompanied by increased expression of CGRP and Iba-1 in the lumbar dorsal horn. These responses were reduced in rats that underwent voluntary exercise. ConclusionsVoluntary exercise ameliorates NP that develops in rats after compression injury. Increased expression of CGRP and Iba-1 in the lumbar dorsal horns of rats exhibiting symptoms of NP suggests that microglial activation might play a crucial role in its development. Collectively, voluntary exercise may be a promising therapeutic modality to treat NP that develops clinically in response to SCI.


2021 ◽  
Author(s):  
Melissa Kelley ◽  
Melissa R Uhran ◽  
Cassandra Herbert ◽  
George Yoshida ◽  
Emmarie Watts ◽  
...  

As carriers of multiple human diseases, understanding the mechanisms behind mosquito reproduction may have implications for remediation strategies. Transfer RNA (tRNA) acts as the adapter molecule of amino acids and are key components in protein synthesis and a critical factor in the function of tRNAs is chemical modifications. Here, we provide an assessment of tRNA modifications between sexes for three mosquito species and examine correlated transcript levels underlying key proteins involved in tRNA modification. Thirty-three tRNA modifications were detected among mosquito species and most of these modifications are higher in females compared to males. Analysis of previous male and female RNAseq datasets indicated a similar increase in tRNA modifying enzymes in females, supporting our observed female enrichment of tRNA modifications. Tissues-specific expressional studies revealed high transcript levels for tRNA modifying enzymes in the ovaries for Aedes aegypti, but not male reproductive tissues. These studies suggest that tRNA modifications may be critical to reproduction in mosquitoes, representing a potential novel target for control.


2021 ◽  
Author(s):  
Yuki Kitai ◽  
Ko Sato ◽  
Daiki Tanno ◽  
Xiaoliang Yuan ◽  
Aya Umeki ◽  
...  

The cell walls and capsules of Cryptococcus neoformans , a yeast-type fungal pathogen, are rich in polysaccharides. Dectin-2 is a C-type lectin receptor (CLR) that recognizes high-mannose polysaccharides. Previously, we demonstrated that Dectin-2 is involved in cytokine production by bone marrow-derived dendritic cells (BM-DCs) in response to stimulation with C. neoformans . In the present study, we analyzed the role of Dectin-2 in the phagocytosis of C. neoformans by BM-DCs. The engulfment of this fungus by BM-DCs was significantly decreased in mice lacking Dectin-2 (Dectin-2KO) or caspase recruitment domain-containing protein 9 (CARD9KO), a common adapter molecule that delivers signals triggered by CLRs, compared to wild-type (WT) mice. Phagocytosis was likewise inhibited, to a similar degree, by the inhibition of Syk, a signaling molecule involved in CLR-triggered activation. A PI3K inhibitor, in contrast, completely abrogated the phagocytosis of C. neoformans . Actin polymerization, i.e., conformational changes in cytoskeletons detected at sites of contact with C. neoformans , was also decreased in BM-DCs of Dectin-2KO and CARD9KO mice. Finally, the engulfment of C. neoformans by macrophages was significantly decreased in the lungs of Dectin-2KO mice compared to WT mice. These results suggest that Dectin-2 may play an important role in the actin polymerization and phagocytosis of C. neoformans by DCs, possibly through signaling via CARD9 and a signaling pathway mediated by Syk and PI3K.


2021 ◽  
Vol 8 ◽  
Author(s):  
Gisele Silva Boos ◽  
Klaus Failing ◽  
Edson Moleta Colodel ◽  
David Driemeier ◽  
Márcio Botelho de Castro ◽  
...  

Like humans, horses are susceptible to neurotropic and neuroinvasive pathogens that are not always readily identified in histological sections. Instead, alterations in astrocytes and microglia cells can be used as pathological hallmarks of injured nervous tissue in a variety of infectious and degenerative diseases. On the other hand, equine glial cell alterations are poorly characterized in diseases. Therefore, in this study, we provide a statistically proved score system to classify astrogliosis and microgliosis in the central nervous system (CNS) of horses, based on morphological and quantitative analyses of 35 equine cases of encephalitis and/or encephalopathies and four non-altered CNS as controls. For this system, we used glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba1) immunohistochemistry, allied to statistical analysis to confirm that the scores were correctly designated. The scores of alterations ranged from 0 (non-altered) to 3 (severely altered) and provided a helpful method for describing astrocytic and microglial alterations in horses suffering from inflammatory and degenerative lesions. This system could be a template for comparative studies in other animal species and could aid algorithms designed for artificial intelligence methods lacking a defined morphological pattern.


2021 ◽  
Vol 22 (13) ◽  
pp. 6839
Author(s):  
Ali H. El-Far ◽  
Yaser H. A. Elewa ◽  
Elsayeda-Zeinab A. Abdelfattah ◽  
Abdel-Wahab A. Alsenosy ◽  
Mustafa S. Atta ◽  
...  

D-galactose (D-gal) administration causes oxidative disorder and is widely utilized in aging animal models. Therefore, we subcutaneously injected D-gal at 200 mg/kg BW dose to assess the potential preventive effect of thymoquinone (TQ) and curcumin (Cur) against the oxidative alterations induced by D-gal. Other than the control, vehicle, and D-gal groups, the TQ and Cur treated groups were orally supplemented at 20 mg/kg BW of each alone or combined. TQ and Cur effectively suppressed the oxidative alterations induced by D-gal in brain and heart tissues. The TQ and Cur combination significantly decreased the elevated necrosis in the brain and heart by D-gal. It significantly reduced brain caspase 3, calbindin, and calcium-binding adapter molecule 1 (IBA1), heart caspase 3, and BCL2. Expression of mRNA of the brain and heart TP53, p21, Bax, and CASP-3 were significantly downregulated in the TQ and Cur combination group along with upregulation of BCL2 in comparison with the D-gal group. Data suggested that the TQ and Cur combination is a promising approach in aging prevention.


2021 ◽  
Vol 4 (7) ◽  
pp. e202000915
Author(s):  
Onruedee Khantisitthiporn ◽  
Byron Shue ◽  
Nicholas S Eyre ◽  
Colt W Nash ◽  
Lynne Turnbull ◽  
...  

Peroxisomes are recognized as significant platforms for the activation of antiviral innate immunity where stimulation of the key adapter molecule mitochondrial antiviral signaling protein (MAVS) within the RIG-I like receptor (RLR) pathway culminates in the up-regulation of hundreds of ISGs, some of which drive augmentation of multiple innate sensing pathways. However, whether ISGs can augment peroxisome-driven RLR signaling is currently unknown. Using a proteomics-based screening approach, we identified Pex19 as a binding partner of the ISG viperin. Viperin colocalized with numerous peroxisomal proteins and its interaction with Pex19 was in close association with lipid droplets, another emerging innate signaling platform. Augmentation of the RLR pathway by viperin was lost when Pex19 expression was reduced. Expression of organelle-specific MAVS demonstrated that viperin requires both mitochondria and peroxisome MAVS for optimal induction of IFN-β. These results suggest that viperin is required to enhance the antiviral cellular response with a possible role to position the peroxisome at the mitochondrial/MAM MAVS signaling synapse, furthering our understanding of the importance of multiple organelles driving the innate immune response against viral infection.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 546
Author(s):  
Giuseppe Piegari ◽  
Paola Pepe ◽  
Davide De Biase ◽  
Ilaria d’Aquino ◽  
Antonio Bosco ◽  
...  

The aim of this study was to investigate the correlation between infection by Dicrocoelium dendriticum (class Trematoda) and the animal host response in terms of macroscopic lesions, the immunopathological response, and histological changes in the livers of naturally infected sheep. Twenty-four sheep were selected on the basis of positive D. dendriticum fecal egg counts (FECs). Gross and histological injuries were scored. A positive significant association was observed between the number of adult worms recovered from the liver, FEC, macroscopic lesions, fibrosis, and bile duct hyperplasia. A significant negative association was observed among these variables and the degree of leukocyte infiltration. In addition, immunophenotyping of the inflammatory cells was carried out using primary antibodies against T cell epitopes (CD3+, CD4+, and CD8+), B cell epitopes (CD79α), and the ionized calcium-binding adapter molecule 1 (IBA-1) antigen. Independently of the severity of the D. dendriticum infection, the predominant cell population was CD3-positive and associated with lesser numbers of CD79α- and Iba-I-positive cells. An increase in Iba-1-positive cells was observed in the livers of animals with a high worm burden. Our results provide a reference basis to better understand the local immune response in sheep naturally infected by D. dendriticum in relation to the FEC and parasitic burden.


2020 ◽  
Author(s):  
Christian Seitz ◽  
Joerg Mittelstaet ◽  
Jana Hau ◽  
Selina Reiter ◽  
Clara Illi ◽  
...  

Abstract Chimeric antigen receptor (CAR)-T therapy holds great promise to sustainably improve cancer treatment. However, currently, a broad applicability of CAR-T cell therapies is hampered by limited CAR-T cell versatility and tractability and the lack of exclusive target antigens to discriminate cancerous from healthy tissues. To achieve temporal and qualitative control on CAR-T function, we engineered the Adapter CAR (AdCAR) system. AdCAR-T are redirected to surface antigens via biotin-labeled adapter molecules in the context of a specific linker structure, referred to as Linker-Label-Epitope. AdCAR-T execute highly specific and controllable effector function against a multiplicity of target antigens. In mice, AdCAR-T durably eliminate aggressive lymphoma. Importantly, AdCAR-T might prevent antigen evasion by combinatorial simultaneous or sequential targeting of multiple antigens and are capable to identify and differentially lyse cancer cells by integration of adapter molecule mediated signals based on multiplex antigen expression profiles.


2020 ◽  
Author(s):  
Eva K. Nichols ◽  
Hsiu-Chun Chuang ◽  
Matthew T. Davis ◽  
Kristina M. Geiger ◽  
Rick Z. Li ◽  
...  

SummaryMaternal immune activation (MIA) increases likelihood of altered neurodevelopmental outcomes. Maternal cytokines are proposed to affect fetal brain development in mice; however, the contribution of fetal immunity to neurodevelopmental disorders is largely unexplored. Here, we show that MIA mediated by Toll-like receptor 3 (TLR3), but not other TLRs, induces a specific set of behavioral phenotypes including decreased sociability and increased restricted repetitive behavior in offspring. Accordingly, these behavioral phenotypes were absent when offspring were deficient for Trif, the downstream adapter molecule of TLR3. Using single-cell RNA sequencing, we identified clusters of border-associated macrophages that were significantly enriched in the fetal brain following TLR3-MIA, and these clusters were diminished in Trif−/− fetal brains.Moreover, we found that triggering TLR3-TRIF in offspring can occur through transplacental viral infection, resulting in altered behavioral phenotypes. Collectively, our data indicate that fetal innate immunity contributes to MIA-induced atypical behaviors in mice.


Sign in / Sign up

Export Citation Format

Share Document