reference plate
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 2)

Author(s):  
Marshall T. Holland ◽  
Kevin Mansfield ◽  
Ann Mitchell ◽  
Kim J. Burchiel

Background: Optical neuronavigation has been established as a reliable and effective adjunct to many neurosurgical procedures. Operations such as asleep deep brain stimulation (aDBS) benefit from the potential increase in accuracy that these systems offer. Built into these technologies is a degree of tolerated error that may exceed the presumed accuracy resulting in suboptimal outcomes. Objective: The objective of this study was to identify an underlying source of error in neuronavigation and determine strategies to maximize accuracy. Methods: A Medtronic Stealth system (Stealth Station 7 hardware, S8 software, version 3.1.1) was used to simulate an aDBS procedure with the Medtronic Nexframe system. Multiple configurations and orientations of the Nexframe-Nexprobe system components were examined to determine potential sources of, and to quantify navigational error, in the optical navigation system. Virtual entry point and target variations were recorded and analyzed. Finally, off-plan error was recorded with the AxiEM system and visual observation on a phantom head. Results: The most significant source of error was found to be the orientation of the reference marker plate configurations to the camera system, with the presentation of the markers perpendicular to the camera line of site being the most accurate position. Entry point errors ranged between 0.134 ± 0.048 and 1.271 ± 0.0986 mm in a complex, reproducible pattern dependent on the orientation of the Nexprobe reference plate. Target errors ranged between 0.311 ± 0.094 and 2.159 ± 0.190 mm with a similarly complex, repeatable pattern. Representative configurations were tested for physical error at target with errors ranging from 1.2 mm to 1.4 mm. Throughout data acquisition, no orientation was indicated as outside the acceptable tolerance by the Stealth software. Conclusions: Use of optical neuronavigation is expected to increase in frequency and variety of indications. Successful implementation of this technology depends on understanding the tolerances built into the system. In situations that depend on extremely high precision, surgeons should familiarize themselves with potential sources of error so that systems may be optimized beyond the manufacturer’s built-in tolerances. We recommend that surgeons align the navigation reference plate and any optical instrument’s reference plate spheres in the plane perpendicular to the line of site of the camera to maximize accuracy.


2021 ◽  
pp. 221-238
Author(s):  
Carolina Martins Nogueira ◽  
Vinícius Torres Pinto ◽  
Luiz Alberto Oliveira Rocha ◽  
Elizaldo Domingues dos Santos ◽  
Liércio André Isoldi

Martins Nogueira, Vinícius Torres Pinto, Luiz Alberto Oliveira Rocha, Elizaldo Domingues dos Santos and Liércio André Isoldi Right click to download the paper PDF (550K) Abstract: This study applied the Constructal Design Method (CDM) associated with the Finite Element Method (FEM) through computational models to perform a geometric analysis on rectangular stiffened plates of steel subjected to a uniform transverse loading, in order to minimize its maximum and central out-of-plane deflections. Considering a non-stiffened plate as reference and maintaining the total volume of steel constant, a portion of material volume deducted from its thickness was transformed into stiffeners through the ϕ parameter, which represents the ratio between the material volume of the stiffeners and the reference plate. Adopting ϕ = 0.30, 27 geometric arrangements of stiffened plates were established, being 9 arrangements for each 3 different stiffeners' thicknesses adopted: ts = 6.35 mm, ts = 12.70 mm and ts = 25.40 mm. For each ts value, the number of longitudinal (Nls) and transverse (Nts) stiffeners were varied from 2 to 4. Thus, in each plate arrangement configured, the influence of the ratio between the height of the transverse and longitudinal stiffeners (hts/hls) was analyzed, taking into account the values 0.50; 0.75; 1.00; 1.25; 1.50; 1.75 and 2.00, regarding to the maximum and central deflections. The results have shown that transforming a portion of steel from a non-stiffened reference plate into stiffeners can reduce the maximum and central deflections by more than 90%. Moreover, it was observed that to reduce the deflections it is more effective consider hts > hls, once the ratio hts/hls = 2.00 was the one that led to the better mechanical behavior among the analyzed cases.


Author(s):  
Frank Burmeister ◽  
Sascha Ehrhardt ◽  
Tino Benkenstein ◽  
Tom Lammers ◽  
Antonia Klein ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5560
Author(s):  
Chanjun Chun ◽  
Taehee Lee ◽  
Sungil Kwon ◽  
Seung-Ki Ryu

Road markings constitute one of the most important elements of the road. Moreover, they are managed according to specific standards, including a criterion for a luminous contrast, which can be referred to as retroreflection. Retroreflection can be used to measure the reflection properties of road markings or other road facilities. It is essential to manage retroreflection in order to improve road safety and sustainability. In this study, we propose a dynamic retroreflection estimation method for longitudinal road markings, which employs a luminance camera and convolutional neural networks (CNNs). The images that were captured by a luminance camera were input into a classification and regression CNN model in order to determine whether the longitudinal road marking was accurately acquired. A segmentation model was also developed and implemented in order to accurately present the longitudinal road marking and reference plate if a longitudinal road marking was determined to exist in the captured image. The retroreflection was dynamically measured as a driver drove along an actual road; consequently, the effectiveness of the proposed method was demonstrated.


Author(s):  
Milton Cesar Bastos Portela Junior ◽  
Vinícius Torres Pinto ◽  
Luiz Alberto Oliveira Rocha ◽  
Elizaldo Domingues Dos Santos ◽  
Liércio André Isoldi

Using the Finite Element Method (FEM), stiffened plates arrangements defined by the application of the Constructal Design Method (CDM) were analyzed. So that, through an Exhaustive Search (ES), different spacing between the stiffeners were tested regarding the central and maximum deflections. Starting from a non-stiffened plate with a fixed volume, a portion of its material was completely removed from its thickness and transformed into stiffeners considering the volumetric fraction 𝜙 = 0.5. It were established 4 arrangements: P(2,2), P(2,3), P(3,2) and P(3,3), varying for each one, the spacing between the stiffeners, as well as the parameter hs/ts (ratio between height and thickness of stiffeners). The results showed that stiffeners equally spaced in the longitudinal and transverse directions with higher ratios hs/ts are more effective, being able to reduce the central and maximum deflections by more than 95% compared to the non-stiffened reference plate.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 220 ◽  
Author(s):  
Grégori Troina ◽  
Marcelo Cunha ◽  
Vinícius Pinto ◽  
Luiz Rocha ◽  
Elizaldo dos Santos ◽  
...  

Stiffened thin steel plates are structures widely employed in aeronautical, civil, naval, and offshore engineering. Considering a practical application where a transverse uniform load acts on a simply supported stiffened steel plate, an approach associating computational modeling, Constructal Design method, and Exhaustive Search technique was employed aiming to minimize the central deflections of these plates. To do so, a non-stiffened plate was adopted as reference from which all studied stiffened plate’s geometries were originated by the transformation of a certain amount of steel of its thickness into longitudinal and transverse stiffeners. Different values for the stiffeners volume fraction (φ) were analyzed, representing the ratio between the volume of the stiffeners’ material and the total volume of the reference plate. Besides, the number of longitudinal (Nls) and transverse (Nts) stiffeners and the aspect ratio of stiffeners shape (hs/ts, being hs and ts, respectively, the height and thickness of stiffeners) were considered as degrees of freedom. The optimized plates were determined for all studied φ values and showed a deflection reduction of over 90% in comparison with the reference plate. Lastly, the influence of the φ parameter regarding the optimized plates was evaluated defining a configuration with the best structural performance among all analyzed cases.


2019 ◽  
Vol 1 (1) ◽  
pp. 23-28
Author(s):  
Tomasz Rochatka

This paper presents a description of the author's method of determining the heat flux penetrating the partition on the basis of a thermographic image. The method is based on a comparison of the temperatures of two areas, one of which is a heat-loaded area with a known heat flux (measured in this case by means of a heating box) and the other control area that was not heat-loaded. Based on preliminary tests, a "calibration" of the method based on differential measurements was carried out using a thermographic camera. Two areas were observed with a thermographic camera, one of which was thermally loaded with various heat fluxes and temperature increases were observed using a thermographic camera in relation to the surface temperature of an identical reference plate but not thermally loaded. As a result of "calibration", a relationship arose that linked the temperature difference with a registered thermographic camera to the heat flux measured with the heating box. The new method was validated by making subsequent series of measurements, this time with models of heat bridges that most often occur in refrigerated bodies and after determining the heat flux, the calculated values were compared with the results of measurements with a heating box.


2019 ◽  
Vol 7 (1) ◽  
pp. 7 ◽  
Author(s):  
João Pedro T. P. De Queiroz ◽  
Marcelo L. Cunha ◽  
Ana Pavlovic ◽  
Luiz Alberto O. Rocha ◽  
Elizaldo D. Dos Santos ◽  
...  

This work searched for the optimal geometrical configuration of simply supported stiffened plates subjected to a transverse and uniformly distributed load. From a non-stiffened reference plate, different geometrical configurations of stiffened plates, with the same volume as the reference plate, were defined through the constructal design method. Thus, applying the exhaustive search technique and using the ANSYS software, the mechanical behaviors of all the suggested stiffened plates were compared to each other to find the geometrical configuration that provided the minimum deflection in the plate’s center when subjected to this loading. The optimum geometrical configuration of stiffeners is presented at the end of this work, allowing a reduction of 98.57% for the central deflection of the stiffened plate if compared to the reference plate. Furthermore, power equations were adjusted to describe the deflections for each combination of longitudinal and transverse stiffeners as a function of the ratio between the height and the thickness of the stiffeners. Finally, a unique equation for determining the central deflections of the studied stiffened plates based only on the number of longitudinal stiffeners without significantly losing accuracy has been proposed.


2019 ◽  
Vol 286 ◽  
pp. 07006
Author(s):  
A. Agriss ◽  
M. Agouzoul ◽  
A. Ettaouil

The idea behind this work comes from the question: What is the impact of plate corrugations on drag? In this context, a numerical study of laminar incompressible flow over a flat plate and over corrugated plates is carried out. Numerical analysis is performed for low Reynolds numbers (Re= 10, Re = 50, Re = 100, Re = 500, Re =1000) using the computational fluid dynamics (CFD) software ANSYS FLUENT. Simulations results are compared to each others and with those of the reference plate (flat plate (figure 4a)). Comparisons are made via drag coefficient Cd. This work is the beginning of a study that evaluates the impact of corrugations on drag reduction on a flat plate.


2018 ◽  
Vol 90 (11) ◽  
Author(s):  
Krzysztof Schabowicz ◽  
Tomasz Gorzelańczyk ◽  
Mateusz Szymków

The article presents the NDT results of research on the influence of high temperature on the destruction of the structure of fiber-cement board as a result of the failure of a tunnel furnace. Two fiber cement boards were tested. There was a plate in a tunnel furnace during a failure, and reference plate dried in normal conditions. The research used acoustic emission method in combination with artificial neural networks.Interesting research results were obtained, which allowed to observe visible changesin the structure of the tested panels under the influence of high temperature. An important application from the point of view of building practice was formulated.


Sign in / Sign up

Export Citation Format

Share Document