scholarly journals Temporal Changes of Virus-Like Particle Abundance and Metagenomic Comparison of Viral Communities in Cropland and Prairie Soils

mSphere ◽  
2021 ◽  
Author(s):  
Carolyn R. Cornell ◽  
Ya Zhang ◽  
Joy D. Van Nostrand ◽  
Pradeep Wagle ◽  
Xiangming Xiao ◽  
...  

Conversion of land alters the physiochemical and biological environments by not only changing the aboveground community, but also modifying the soil environment for viruses and microbes. Soil microbial communities are critical to nutrient cycling, carbon mineralization, and soil quality; and viruses are known for influencing microbial abundance, community structure, and evolution.

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255137
Author(s):  
Chi-Chun Huang ◽  
Chih-Ming Liang ◽  
Ting-I Yang ◽  
Jiann-Long Chen ◽  
Wei-Kuang Wang

Anthropogenic activities accompanied by heavy metal waste threaten the environment. Heavy metal pollution alters the soil microbial community composition, and the microorganisms that adapt to this stress increase in abundance. The remediation process of contaminated soil not only reduces the concentration of heavy metals but also alters the bacterial communities. High-throughput 16S rDNA sequencing techniques were applied to understand the changes in soil microbial communities. Using the remediation approach of the soil mixing, the concentrations of heavy metals in the contaminated areas were diluted and the soil environment was changed. The change of soil environment as a disturbance contributed to the alteration of microbial diversity of the remediated areas. The pH and heavy metals (Cr, Cu, Ni, and Zn) were the most influential factors driving the changes in community structure. The bacterial community structure was significantly different among sample areas. The decrease of heavy metals in soil may be the important factors that changed the microbial composition. This study provides the better understanding of the changes in composition of microbial communities affected by the remediation process in heavy metal-contaminated soil.


2020 ◽  
Vol 8 (6) ◽  
pp. 834
Author(s):  
Naihui Li ◽  
Danmei Gao ◽  
Xingang Zhou ◽  
Shaocan Chen ◽  
Chunxia Li ◽  
...  

Intercropping can achieve sustainable agricultural development by increasing plant diversity. In this study, we investigated the effects of tomato monoculture and tomato/potato-onion intercropping systems on tomato seedling growth and changes of soil microbial communities in greenhouse conditions. Results showed that the intercropping with potato-onion increased tomato seedling biomass. Compared with monoculture system, the alpha diversity of soil bacterial and fungal communities, beta diversity and abundance of bacterial community were increased in the intercropping system. Nevertheless, the beta-diversity and abundance of fungal community had no difference between the intercropping and monoculture systems. The relative abundances of some taxa (i.e., Acidobacteria-Subgroup-6, Arthrobacter, Bacillus, Pseudomonas) and several OTUs with the potential to promote plant growth were increased, while the relative abundances of some potential plant pathogens (i.e., Cladosporium) were decreased in the intercropping system. Redundancy analysis indicated that bacterial community structure was significantly influenced by soil organic carbon and pH, the fungal community structure was related to changes in soil organic carbon and available phosphorus. Overall, our results suggested that the tomato/potato-onion intercropping system altered soil microbial communities and improved the soil environment, which may be the main factor in promoting tomato growth.


Author(s):  
Lanying Ma ◽  
Fernando Igne Rocha ◽  
Jaejin Lee ◽  
Jinlyung Choi ◽  
Mauricio Tejera ◽  
...  

Yield of the perennial grass Miscanthus × giganteus has shown an inconsistent and unpredictable response to nitrogen (N) fertilizer, yet fertilization underpins the crop’s environmental and economic sustainability. The interactions among soil microbial communities, N availability, and M. × giganteus and management may explain changes in plant productivity. In this study, soil samples from different stand ages of M. × giganteus in a replicated chronosequence field trial were used to investigate the effects of stand age and N fertilizer rates on microbial community structure. We hypothesized that there is a definable M. × giganteus soil microbiome and that this community varies significantly with stand age and fertilization. Our results showed that the main phyla in soil microbial communities, regardless of plant age, are similar but microbial community structures are significantly different. The variation in observed microbial communities generally decreases in older stand ages. The amount of N fertilizer applied also affected the microbial community structure associated with different aged M. × giganteus. Specifically, the relative abundance of Proteobacteria (Alphaproteobacteria and Gammaproteobacteria) and Acidobacteria (Subgroup Gp1) increased shortly after fertilization and were more associated with younger M. × giganteus. Further, our results show a significant relationship between bacterial alpha diversity and fertilization rates and that this response is also impacted by stand age. Overall, our results emphasize linkages between microbial community structure, plant age, and fertilization in M. × giganteus.


2019 ◽  
Vol 3 (3) ◽  
pp. 212-223 ◽  
Author(s):  
Yuan Zeng ◽  
Zaid Abdo ◽  
Amy Charkowski ◽  
Jane E. Stewart ◽  
Kenneth Frost

1,3-Dichloropropene (1,3-D) is a well-known nematicidal soil fumigant on many crop species. Currently, little is known about its impact on soil microbial communities using culture-free methods. In this study, we investigated changes in soil bacterial and fungal diversity and composition at two depths (30.5 and 61 cm) in response to management practices of applying 1,3-D at four different rates (103, 122, 140, and 187 liters/ha) relative to an untreated control in potato production fields using 16S rRNA and internal transcribed spacer (ITS) amplicon sequencing. A total of 12,783 operational taxonomic units (OTUs) for 16S and 1,706 OTUs for ITS were obtained. Sequencing revealed that Proteobacteria, Firmicutes, Actinobacteria, and Ascomycota were dominant phyla in soils. Comparing alpha diversity of microbial communities at the different chemical rates with untreated plots showed that bacterial communities in plots treated with 1,3-D fumigation at 140 liters/ha were richer, which was supported by higher richness indices. Other diversity indices and overall soil microbial community structure were not significantly influenced by any rates of 1,3-D fumigation, although higher bacterial and fungal richness and diversity were observed in posttreatment soils and/or at 30.5 cm. Of the identified microbial families, the differential abundance of 45 bacterial and 24 fungal families was affected by sample depth, 1,3-D rate, or the interaction of sample depth and 1,3-D. The bacterial family Enterobacteriaceae, which includes species that specialize in decay of complex carbohydrates, increased in abundance post-1,3-D fumigation, and the fungal family Ophiocordycipitaceae, which includes nematode and insect pathogens, decreased, suggesting that the nematode and soil insect death caused by fumigation may selectively impact specific fungal and bacterial families.


2015 ◽  
Vol 2 (2) ◽  
pp. 1393-1418
Author(s):  
J. S. Buyer ◽  
A. Schmidt-Küntzel ◽  
M. Nghikembua ◽  
J. E. Maul ◽  
L. Marker

Abstract. Savanna ecosystems are subject to desertification and bush encroachment, which reduce the carrying capacity for wildlife and livestock. Bush thinning is a management approach that can, at least temporarily, restore grasslands and raise the grazing value of the land. In this study we examined the soil microbial communities under bush and grass in Namibia. We analyzed the soil through a chronosequence where bush was thinned at 9, 5, or 3 years before sampling. Soil microbial biomass, the biomass of specific taxonomic groups, and overall microbial community structure was determined by phospholipid fatty acid analysis, while the community structure of Bacteria, Archaea, and fungi was determined by multiplex terminal restriction fragment length polymorphism analysis. Soil under bush had higher pH, C, N, and microbial biomass than under grass, and the microbial community structure was also altered under bush compared to grass. A major disturbance to the ecosystem, bush thinning, resulted in an altered microbial community structure compared to control plots, but the magnitude of this perturbation gradually declined with time. Community structure was primarily driven by pH, C, and N, while vegetation type, bush thinning, and time since bush thinning were of secondary importance.


SOIL ◽  
2016 ◽  
Vol 2 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Jeffrey S. Buyer ◽  
Anne Schmidt-Küntzel ◽  
Matti Nghikembua ◽  
Jude E. Maul ◽  
Laurie Marker

Abstract. Savanna ecosystems are subject to desertification and bush encroachment, which reduce the carrying capacity for wildlife and livestock. Bush thinning is a management approach that can, at least temporarily, restore grasslands and raise the grazing value of the land. In this study we examined the soil microbial communities under bush and grass in Namibia. We analyzed the soil through a chronosequence where bush was thinned at 9, 5, or 3 years before sampling. Soil microbial biomass, the biomass of specific taxonomic groups, and overall microbial community structure was determined by phospholipid fatty acid analysis, while the community structure of Bacteria, Archaea, and fungi was determined by multiplex terminal restriction fragment length polymorphism analysis. Soil under bush had higher pH, C, N, and microbial biomass than under grass, and the microbial community structure was also altered under bush compared to grass. A major disturbance to the ecosystem, bush thinning, resulted in an altered microbial community structure compared to control plots, but the magnitude of this perturbation gradually declined with time. Community structure was primarily driven by pH, C, and N, while vegetation type, bush thinning, and time since bush thinning were of secondary importance.


2013 ◽  
Vol 22 (4) ◽  
pp. 404-423 ◽  
Author(s):  
Elena Anders ◽  
Andrea Watzinger ◽  
Franziska Rempt ◽  
Barbara Kitzler ◽  
Bernhard Wimmer ◽  
...  

Biochar application is a promising strategy for sequestering carbon in agricultural soils and for improving degraded soils. Nonetheless, contradictory and unsettled issues remain. This study investigates whether biochar influences the soil microbial biomass and community structure using phospholipid fatty acid (PLFA) analysis. We monitored the effects of four different types of biochar on the soil microbial communities in three temperate soils of Austria over several months. A greenhouse experiment and two field experiments were conducted. The biochar application did not significantly increase or decrease the microbial biomass. Only the addition of vineyard pruning biochar pyrolysed at 400°C caused microbial biomass to increase in the greenhouse experiment. The biochar treatments however caused shifts in microbial communities (visualized by principal component analysis). We concluded that the shifts in the microbial community structure are an indirect rather than a direct effect and depend on soil conditions and nutrient status.


2020 ◽  
Author(s):  
Tong Zhang ◽  
Yufei Liu ◽  
xin Sui ◽  
fuqiang Song

Abstract Background : To study the impact of land-use change on soil microbial community structure and diversity in Northeast China, three typical land-use types (plough, grassland, and forest), grassland change to forest land and grassland change to plough, in the Qiqihar region of Heilongjiang Province were taken as research objects. Methods : MiSeq high-throughput sequencing technology based on bacterial 16S rRNA and fungal ITS rRNA was used to study the above community structure of soil bacteria and fungi and to explore the relationship between soil bacteria and soil environmental factors. Results : The results showed that the dominant bacterial phyla changed from Actinobacteria to Acidobacteria , the dominant fungal phyla changed from Ascomycetes to Basidiomycetes , and the ECM functional group increased significantly after the grassland was completely changed to forest land. After the grassland was changed to plough, the dominant phyla changed from Actinomycetes to Proteobacteria . The functional groups of pathogens and parasites increased significantly. There was no significant difference in the diversity of soil bacterial communities, and the diversity of fungal communities increased significantly. CCA showed that pH, MC, NO 3 - -N, TP and AP of soil were important factors affecting the composition of soil microbial communities, and changes in land-use patterns changed the physical and chemical properties of soils, thereby affecting the structure and diversity of microbial communities. Conclusions : Our research results clarify the impact of changes in land use on the characteristics of soil microbial communities and provide basic data on the healthy use of land.


Sign in / Sign up

Export Citation Format

Share Document