scholarly journals Geochemical Characterization of Nyamyumba Hot Spring, Northwest Rwanda

Author(s):  
Francois Hategekimana ◽  
Theophile Mugerwa ◽  
Cedrick Nsengiyumva ◽  
Digne Rwabuhungu ◽  
Juliet Confiance Kabatesi

Abstract Hot spring is a hot water that is naturally occurring on the surface from the underground and typically heated by subterranean volcanic activity and local underground geothermal gradient. There are four main hot springs in Rwanda such as: Kalisimbi, Bugarama, Kinigi and Nyamyumba former name Gisenyi hot springs. This research focused on the geochemical analysis of Nyamyumba hot springs located near the fresh water of Lake Kivu. Nyamyumba hot springs are located in the western branch of the East African Rift System and they are located near Virunga volcanic complex, explaining the rising and heating of water. The concentrations of Sulfate, Iron, Ammonia, Alkalinity, Silica, Phosphate, Salinity, Alkalinity, and Conductivity using standard procedures were measured. The results showed that hot spring water has higher concentrations of chemicals compared to Lake Kivu water and the geochemistry of these hot springs maybe associated with rock dissolution by hot water. The measured parameters were compared with World Health Organization (WHO) standards for recreational waters and it has been identified that Nyamyumba hot spring are safe to use in therapeutic activities (Swimming).

2021 ◽  
Vol 13 (1) ◽  
pp. 820-834
Author(s):  
Jun Ma ◽  
Zhifang Zhou

Abstract The exploration of the origin of hot spring is the basis of its development and utilization. There are many low-medium temperature hot springs in Nanjing and its surrounding karst landform areas, such as the Tangshan, Tangquan, Lunshan, and Xiangquan hot springs. This article discusses the origin characters of the Lunshan hot spring with geological condition analysis, hydrogeochemical data, and isotope data. The results show that the hot water is SO4–Ca type in Lunshan area, and the cation content of SO4 is high, which are related to the deep hydrogeological conditions of the circulation in the limestone. Carbonate and anhydrite dissolutions occur in the groundwater circulation process, and they also dominate the water–rock interaction processes in the geothermal reservoir of Lunshan. The hot water rising channels are deeply affected by the NW and SN faults. Schematic diagrams of the conceptual model of the geothermal water circulation in Lunshan are plotted. The origin of Tangshan, Tangquan, and Xiangquan hot springs are similar to the Lunshan hot spring. In general, the geothermal water in karst landforms around Nanjing mainly runs through the carbonate rock area and is exposed near the core of the anticlinal structure of karst strata, forming SO4–Ca/SO4–Ca–Mg type hot spring with the water temperature less than 60°C. The characters of the hot springs around Nanjing are similar, which are helpful for the further research, development, and management of the geothermal water resources in this region.


2001 ◽  
Vol 23 ◽  
Author(s):  
Rustem Pehlivan

This investigation was carried out to determine the hydrogeochemical characteristics of the Ozancik hot spring. The study area is located about 15 km southwest of the town of Can, Canakkale. During the investigation, a geological map of the hot spring and its surroundings was prepared, and hot water and rock samples were collected from the study site. The Palaeogene-Neogene andesite, trachyandesite, andesitic tuff, silicified tuff, and tuffites form the basement rocks and they are overlain by the Quaternary alluvial deposits. The chemical analysis of hot water indicates that it is rich in SO42-(575 ppm), Cl-(193.2 ppm), HCO3-(98.5 ppm), Na+(315 ppm),  K+(7.248 ppm). Ca2+(103 ppm), Mg2+(0.274 ppm), and SiO2(43.20). The distribution of ions in the hot water on the Schoeller diagram has an arrangement of r(Na++K+)>rCa2+>rMg2+and r(SO42-)>rCl->r(HCO3-).  In addition, the inclusion of Fe2+, Cu2+, Cr3+, Mn2+, Ni2+ and Hg2+ in the hot water samples indicates potential natural inorganic contamination.  The water analysis carried out following the ICPMS-200 technique was evaluated according to the World Health Organization and Turkish Standards. The utilisation and the effects of the hot water on human health are also discussed in the paper.


Author(s):  
Bolormaa Ch ◽  
Oyuntsetseg D ◽  
Bolormaa O

In this study, we collected hot spring water sample from Otgontenger, Tsetsuukh, Zart, Ulaan Khaalga and Khojuul in Zavkhan province. The purpose of this study is to determine the temperature of geothermal water and its depth which based on the hydrochemical component. Hot spring water analyses showed that temperature ranges between 33.4 to 45.5°C, pH ranges 8.40 to 9.56, and the total dissolved solid amount was 170 to 473 mg/L. From the result of hydrochemical analyses, hot spring samples were included in SO4-Na and HCO3-Na type. In comparison to other hot spring samples, Tsetsuukh hot spring has shown negative oxidation reduction potential, -0.8 mV and dissolved hydrogen, 0.22 mg/L. Therefore, it has a higher ability for medical treatment than other hot spring water due to its reduction state. The reservoir temperature of these hot springs is calculated by several geothermometer methods, and temperatures ranged between 102оC to 149оC. According to this result, it assumed that geothermal water with low temperature which has the ability to use for room heating and producing energy by the binary system. Thus, we determined that reservoir depth is 1.3 to 3.7 km using annual average surface and reservoir temperature, and regional geothermal gradient. Завхан аймгийн халуун рашаануудын химийн найрлага, геотермометрийн судалгаа Хураангуй: Бид энэхүү судалгааны ажлаар Завхан аймгийн нутагт орших Отгонтэнгэр, Зарт, Цэцүүх, Улаан хаалга, Хожуулын халуун рашаануудын гидрохимийн найрлагыг нарийвчлан тогтоосоны үндсэн дээр тухайн рашаануудын газрын гүний халуун усны температур болон гүнийг тогтоох зорилго тавин ажиллаа. Завхан аймгийн рашаанууд нь халуун 33.4-45.5°C температуртай, шүлтлэг орчинтой (pH 8.4-9.56), 170-473 мг/л хүртэл эрдэсжилттэй, HCO3-Na болон SO4-Na-ийн төрлийн халуун рашааны ангилалд хамаарагдаж байна. Эдгээр рашаануудаас Цэцүүхийн халуун рашааны исэлдэн ангижрах потенциал нь -0.8 мВ, ууссан устөрөгчийн агуулга 0.22 мг/л илэрсэн нь судалгаанд хамрагдсан бусад рашаануудтай харьцуулахад ангижрах төлөвт оршиж байгаа бөгөөд илүү эмчилгээний идэвхтэй болохыг харуулж байна. Судалгаанд хамрагдсан халуун рашаануудын гүний температурыг химийн найрлагаас нь хамааруулан хэд хэдэн геотермометрийг ашиглан тооцоход дунджаар 102-149oС байсан ба энэ нь бага температуртай усны ангилалд хамаарагдаж байгаа учир тухайн халуун усны нөөцийг өрөө тасалгаа халаах болон бинари системийг ашиглан цахилгаан гаргаж авах боломжтой байна. Мөн Завхан аймгийн халуун рашаануудын газрын гүний халуун усны нөөц нь газрын гадаргаас доош 1.3-3.7 км-ийн гүнд байрладаг болохыг орд дээрх температур, газрын гүний халуун усны температур болон бүс нутгийн геотермал градиентад үндэслэн тооцоолон тодорхойллоо. Түлхүүр үг: Гидрохими, халуун рашаан, геотермометр, гүний температур.


2019 ◽  
Vol 23 (5 Part A) ◽  
pp. 2613-2622
Author(s):  
Bi Li ◽  
Shi Zheng

Guangxi Guilin area, China, is rich in hot spring resources. In this paper, a hot spring water temperature monitoring system is developed for longsheng hot springs. Mainly using the hot water of eye of hot springs as the heat source, designing a set of multi-point temperature monitoring system with single-chip and multi-slave as the core of the single-chip microcomputer and wireless and bi-directional transmission for the main station and multiple slave stations to realize automatic temperature monitoring. The system slave station can exchange geothermal water with high temperature extracted from the eye of hot springs and cold water, and automatically control the temperature of the hot spring pool to reach a set value range by controlling the flow rate of the cold water. At the same time, the main station can complete the tasks of monitoring system by setting control commands such as temperature.


2012 ◽  
Vol 3 ◽  
pp. 34-40
Author(s):  
Hendrik Tjiawi ◽  
Andrew C. Palmer ◽  
Grahame J. H. Oliver

 The existence of hot springs coupled with the apparent anomalous high heat flow has sparked interest in the potential for geothermal development in Singapore. This geothermal resource may be potentially significant and could be exploited through Engineered Geothermal System (EGS) technology, i.e. a method to create artificial permeability at depth in granitic or sandstone formations as found under Singapore. The apparently ever-increasing fossil fuel price has made the cost of using the EGS technology more viable than it was in the past. Thus, to assess the resource, a numerical model for the geothermal reservoir has been constructed. Mass and heat flows in the system are simulated in 2D with AUTOUGH2.2, and the graphical interface processed through MULGRAPH2.2. Natural state calibration was performed to match both the observed and the expected groundwater profile, and also to match the hot water upflow at the Sembawang hot spring, with simulated flowrate matching the hot spring natural flowrate. The simulation gives an encouraging result of 125 - 150 °C hot water at depth 1.25 – 2.75 km.


Author(s):  
Muhammad Afzal Jamali ◽  
Muhammad Hassan Agheem ◽  
Akhtar Hussain Markhand ◽  
Shahid Ali Shaikh ◽  
Asfand Yar Wali Arain ◽  
...  

Geothermal water is increasingly used around the world for its exploitation. Bulk electrical resistivity differences can bring significant information on variation of subsurface geothermal aquifer characteristics. The electrical resistivity survey was carried out in Laki range in lower Indus basin in the study area to explore the subsurface geothermal aquifers. The Schlumberger electrode configuration with range from 2 m to 220 m depth was applied. Three prominent locations of hot springs were selected including Laki Shah Saddar, Lalbagh and Kai hot spring near Sehwan city. After processing resistivity image data, two hot water geothermal aquifers were delineated at Laki Shah Sadder hot springs. The depth of first aquifer was 56 m and its thickness 38 m in the limestones. The depth of second aquifer of 190 m and with thickness of 96 m hosted in limestone. In Lalbagh hot springs two geothermal aquifers were delineated on the basis of apparent resistivity contrast, the depth of first aquifer zone in sandstone was in sandstone 15 m and thickness 12 m, while the depth of second aquifer was 61m and thickness was 35m. In Kai hot springs two hot water geothermal aquifers were delineated. The depth of first geothermal aquifer was 21m and thickness was 18 m and the depth of second aquifer was 105 m and thickness was 61m present in sandstone lithology. Present work demonstrates the capability of electrical resistivity images to study the potential of geothermal energy in shallow aquifers. These outcomes could potentially lead to a number of practical applications, such as the monitoring or the design of shallow geothermal systems.


2021 ◽  
Author(s):  
Saeed Ghoddousi ◽  
Behnaz Rezaie ◽  
Samane Ghandehariun

The scattered hot springs on the globe are natural thermal energy storages that are available for industrial and recreational advantages. A hot spring is a hydrothermal system that can be used for power generation purposes as well as deep-well geothermal plants. In the present study, a techno-enviro-economic study is conducted to determine the power generation potential of hot springs as a heat source of the Organic Rankine Cycle (ORC). The hot water temperature and discharge mass flow rate from hot springs varies from 60 to 90 ᵒC and 5 to 50 kg/s, respectively. The ORC plant is modeled by Aspen Plus V9. The impacts of the temperature and mass flow rate of discharge from hot springs on the thermodynamics and economics of the plants are investigated. The results indicate that increasing the hot spring temperature and discharge mass flow rate improves the thermal efficiency and power generation capacity of ORC plant while Payback Period (PP), Levelized Energy Cost (LEC), and Specific Investment Cost (SIC) shrink. The power generation capacity varies from 9.3 kW to 303 kW and the LEC range is from 0.03 $/kWh to 0.13 $/kWh based on the hot spring and water discharge mass flow rate.


2012 ◽  
Vol 6 (2) ◽  
pp. 33-36
Author(s):  
Helda Handayani

Suli hot springs area has a low level of acidity or neutral pH ranges (7,2–7,7). It is also supported by a high chloride concentration value, which ranges (208,87-226,27) ppm. Thisshows that the area on station 1, 2, 3, and 4 are located in areas with water flow into the upper reservoir (upflow) and belongs to hot water domination reservoir tipe (water heatedreservoir). Reservoir temperature is calculated by the formula geotermometer (SiO2)p considered whether applied in the four kinds geotermometer equation because it gives the calculation results are not much different temperature and has a value of rms-error is less than 2%. Reservoir temperature at a hot springs station Suli possible temperature (161 ± 0,9)oC. Reservoir temperature at station 2 hot spring Suli possible hot water temperature (172 ± 1,0)oC. Reservoir temperature at station 3 hot springs Suli possible temperature (171 ±0,9)oC. Reservoir temperature at station 4 hot springs Suli possible temperature (169 ± 1,0)oC.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Akinola Adesuji Komolafe ◽  
Zacharia Njuguna Kuria ◽  
Tsehaie Woldai ◽  
Marleen Noomen ◽  
Adeleye Yekini Biodun Anifowose

The tectonic lineaments and thermal structure of Lake Magadi, southern Kenyan rift system, were investigated using ASTER data and geophysical methods. Five N-S faults close to known hot springs were identified for geoelectric ground investigation. Aeromagnetic data were employed to further probe faults at greater depths and determine the Curie-point depth. Results indicate a funnel-shaped fluid-filled (mostly saline hydrothermal) zone with relatively low resistivity values of less than 1 Ω-m, separated by resistive structures to the west and east, to a depth of 75 m along the resistivity profiles. There was evidence of saline hydrothermal fluid flow toward the surface through the fault splays. The observed faults extend from the surface to a depth of 7.5 km and are probably the ones that bound the graben laterally. They serve as major conduits for the upward heat flux in the study area. The aeromagnetics spectral analysis also revealed heat source emplacement at a depth of about 12 km. The relative shallowness implies a high geothermal gradient evidenced in the surface manifestations of hot springs along the lake margins. Correlation of the heat source with the hypocenters showed that the seismogenetic zone exists directly above the magmatic intrusion, forming the commencement of geodynamic activities.


Sign in / Sign up

Export Citation Format

Share Document