orbital state
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 10)

H-INDEX

16
(FIVE YEARS 2)

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2486
Author(s):  
Rui-Zi Hu ◽  
Rong-Long Ma ◽  
Ming Ni ◽  
Xin Zhang ◽  
Yuan Zhou ◽  
...  

In the last 20 years, silicon quantum dots have received considerable attention from academic and industrial communities for research on readout, manipulation, storage, near-neighbor and long-range coupling of spin qubits. In this paper, we introduce how to realize a single spin qubit from Si-MOS quantum dots. First, we introduce the structure of a typical Si-MOS quantum dot and the experimental setup. Then, we show the basic properties of the quantum dot, including charge stability diagram, orbital state, valley state, lever arm, electron temperature, tunneling rate and spin lifetime. After that, we introduce the two most commonly used methods for spin-to-charge conversion, i.e., Elzerman readout and Pauli spin blockade readout. Finally, we discuss the details of how to find the resonance frequency of spin qubits and show the result of coherent manipulation, i.e., Rabi oscillation. The above processes constitute an operation guide for helping the followers enter the field of spin qubits in Si-MOS quantum dots.


Author(s):  
Jean-Pascal Brison

AbstractSince the mid-80s, new classes of superconductors have been discovered in which the origin of superconductivity cannot be attributed to the electron–ion interactions at the heart of conventional superconductivity. Most of these unconventional superconductors are strongly correlated electron systems, and identifying (or even more difficult, predicting) the precise superconducting state has been, and sometimes remains, an actual challenge. However, in most cases, it has been demonstrated that in these materials the spin state of the Cooper pairs is a singlet state, often associated with a ‘d-wave’ or ‘$$s +/-$$ s + / - ’ orbital state. For a few systems, a spin-triplet state is strongly suspected, like in superfluid $$^3$$ 3 He; this leads to a much more complex superconducting order parameter. This was long supposed to be the case for the d-electron system Sr$$_2$$ 2 RuO$$_4$$ 4 , and is very likely realized in some uranium-based (f-electron) ‘heavy fermions’ like UPt$$_3$$ 3 (with multiple superconducting phases) or UGe$$_2$$ 2 (with coexisting ferromagnetic order). Beyond the interest for these materials, p-wave superconductivity is presently quite fashionable for its topological properties and the prediction that it could host Majorana-like low energy excitations, seen as a route towards robust (topologically protected) qubits. The aim of these notes is to make students and experimentalists more familiar with the d-vector representation used to describe p-wave (spin triplet) superconductivity. The interest of this formalism will be illustrated on some systems where p-wave superconductivity is the prime suspect.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 998
Author(s):  
Shunsuke Kitou ◽  
Yuto Hosogi ◽  
Ryo Kitaura ◽  
Toshio Naito ◽  
Toshikazu Nakamura ◽  
...  

The physical properties of molecular crystals are governed by the frontier orbitals of molecules. A molecular orbital, which is formed by superposing the atomic orbitals of constituent elements, has complicated degrees of freedom in the crystal because of the influence of electron correlation and crystal field. Therefore, in general, it is difficult to experimentally observe the whole picture of a frontier orbital. Here, we introduce a new method called “core differential Fourier synthesis” (CDFS) using synchrotron X-ray diffraction to observe the valence electron density in materials. By observing the valence electrons occupied in molecular orbitals, the orbital state can be directly determined in a real space. In this study, we applied the CDFS method to molecular materials such as diamond, C60 fullerene, (MV)I2, and (TMTTF)2X. Our results not only demonstrate the typical orbital states in some materials, but also provide a new method for studying intramolecular degrees of freedom.


2020 ◽  
Vol 496 (4) ◽  
pp. 4420-4432
Author(s):  
Murat Kaplan ◽  
Sergen Cengiz

ABSTRACT Most co-orbital objects in the Solar system are thought to follow tadpole-type orbits, behaving as Trojans. However, most of Earth’s identified co-orbitals are moving along horseshoe-type orbits. The current tally of minor bodies considered to be Earth co-orbitals amounts to 18; of them, 12 are horseshoes, 5 are quasi-satellites, and 1 is a Trojan. The semimajor axis values of all these bodies librate between 0.983 and 1.017 au. In this work, we have studied the dynamical behaviour of objects following orbits with semimajor axis within this range that may be in a 1:1 mean-motion resonance with Earth. Our results show that asteroids 2016 CO246, 2017 SL16, and 2017 XQ60 are moving along asymmetrical horseshoe-type orbits; the asteroid 2018 PN22 follows a nearly symmetric or regular horseshoe-type orbit. Asteroids 2016 CO246, 2017 SL16, and 2017 XQ60 can remain in the horseshoe co-orbital state for about 900, 3300, and 2700 yr, respectively. Asteroid 2018 PN22 has a more chaotic dynamical behaviour; it may not stay in a horseshoe co-orbital state for more than 200 yr. The horseshoe libration periods of 2016 CO246, 2017 SL16, 2017 XQ60, and 2018 PN22 are 280, 255, 411, and 125 yr, respectively.


2020 ◽  
Author(s):  
Shin-Chan Han ◽  
Khosro Ghobadi Far ◽  
Jeanne Sauber ◽  
Christopher Mccullough ◽  
David Wiese ◽  
...  

<p>We present a method of analysing inter-satellite tracking data for detecting short-term (sub-monthly) gravitational changes from GRACE and GRACE Follow-On.  The method is based on the residual range-rate data with respect to the reference range-rate computed with dynamic orbital state vectors.  Then, we apply a numerical differentiation to compute range-acceleration residuals.  We found that the range-acceleration residuals are near-perfectly correlated with the line-of-sight gravity difference (LGD) between two spacecrafts and the transfer (admittance) function between them can be determined regardless of time and space (Ghobadi-Far et al., 2018, JGR-Solid Earth, https://doi.org/10.1029/2018JB016088).  The transfer function, to be applied directly to range-acceleration residuals, enables accurate LGD determination with the error of 0.15 nm/s^2 over the frequency band higher than 1 mHz (5 cycles-per-revolution), whereas the actual GRACE measurement error is several times larger.</p><p>In this presentation, we present two new geophysical applications to examine high-frequency gravitational changes at times scales of significantly less than one month; Gravitational observation of tsunamis triggered by the 2004 Sumatra, 2010 Maule, and 2011 Tohoku earthquakes and transient gravitational changes due to Earth’s free oscillation excited by the 2004 earthquake.  Lastly, we present new results from GRACE Follow-On KBR and LRI inter-satellite ranging data. </p>


Author(s):  
Laura Pirovano ◽  
Gennaro Principe ◽  
Roberto Armellin

AbstractWhen building a space catalogue, it is necessary to acquire multiple observations of the same object for the estimated state to be considered meaningful. A first concern is then to establish whether different sets of observations belong to the same object, which is the association problem. Due to illumination constraints and adopted observation strategies, small objects may be detected on short arcs, which contain little information about the curvature of the orbit. Thus, a single detection is usually of little value in determining the orbital state due to the very large associated uncertainty. In this work, we propose a method that both recognizes associated observations and sequentially reduces the solution uncertainty when two or more sets of observations are associated. The six-dimensional (6D) association problem is addressed as a cascade of 2D and 4D optimization problems. The performance of the algorithm is assessed using objects in geostationary Earth orbit, with observations spread over short arcs.


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 628 ◽  
Author(s):  
Yulei Qian ◽  
Daiyin Zhu

Aiming to acquire ultrahigh resolution images, algorithms for spaceborne spotlight synthetic aperture radar (SAR) imaging typically confront challenges of curved orbit and azimuth spectral aliasing. In order to conquer these difficulties, a method is proposed in this paper to obtain ultrahigh resolution spaceborne SAR images on a curved orbit, which is composed of the modified RMA (Range Migration Algorithm) and the modified deramping-based approach. The modified RMA is developed to deal with the effect introduced by a curved orbit and the modified deramping-based approach is utilized to handle the problem of azimuth spectral aliasing. In the modified RMA, the polynomial expression of SAR two-dimensional spectrum on a curved orbit is derived with fourth-order azimuth phase history model and series reversion. Then, the singular value decomposition (SVD) is applied to decompose the expression of SAR two-dimensional spectrum numerically in order to acquire coordinates for Stolt interpolation in the scenario of curved orbit. In addition, the modified deramping-based approach is derived by introducing orbital state vectors in order to accommodate the situation of curved orbit in the proposed method. Experiments are implemented on point target simulation in order to verify the effectiveness of the presented method. In experiments, the range and azimuth resolution can achieve 0.15 m and 0.14 m, with focused scene size of 3 km by 3 km.


Sign in / Sign up

Export Citation Format

Share Document