composite adaptive control
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 12)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jianfei Li ◽  
Yaobing Wang ◽  
Zhiyong Liu ◽  
Xin Jing ◽  
Chengwei Hu

In this paper, a new recursive implementation of composite adaptive control for robot manipulators is proposed. We investigate the recursive composite adaptive algorithm and prove the stability directly based on the Newton-Euler equations in matrix form, which, to our knowledge, is the first result on this point in the literature. The proposed algorithm has an amount of computation On, which is less than any existing similar algorithms and can satisfy the computation need of the complicated multidegree manipulators. The manipulator of the Chinese Space Station is employed as a simulation example, and the results verify the effectiveness of this proposed recursive algorithm.


Author(s):  
Mohammad Alsalti ◽  
Ali Tivay ◽  
Xin Jin ◽  
George Kramer ◽  
Jin-Oh Hahn

Abstract This paper concerns the design and rigorous in silico evaluation of a closed-loop hemorrhage resuscitation algorithm with blood pressure (BP) as controlled variable. A lumped-parameter control design model relating volume resuscitation input to blood volume (BV) and BP responses was developed and experimentally validated. Then, three alternative adaptive control algorithms were developed using the control design model: (i) model reference adaptive control with BP feedback, (ii) composite adaptive control with BP feedback, and (iii) composite adaptive control with BV and BP feedback. To the best of our knowledge, this is the first work to demonstrate model-based control design for hemorrhage resuscitation with readily available BP as feedback. The efficacy of these closed-loop control algorithms was comparatively evaluated as well as compared with an empiric expert knowledge-based algorithm based on 100 realistic virtual patients created using a well-established physiological model of cardiovascular hemodynamics. The in silico evaluation results suggested that the adaptive control algorithms outperformed the knowledge-based algorithm in terms of both accuracy and robustness in BP set point tracking: the average median performance error and median absolute performance error were significantly smaller by >99% and >91%, and as well, their inter-individual variability was significantly smaller by >88% and >94%. Pending in vivo evaluation, model-based control design may advance the medical autonomy in closed-loop hemorrhage resuscitation.


Machines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 181
Author(s):  
Yaowen Ge ◽  
Xiaowei Yang ◽  
Wenxiang Deng ◽  
Jianyong Yao

The electro-hydrostatic actuator (EHA), the actuator of electric drive and hydraulic transmission, is competitive since it is small in size, light in weight and high in power density. However, the existence of the velocity loop error of servo motors, unmodeled dynamics and highly nonlinear uncertainties restrict the improvement of the tracking accuracy of the EHA system. In order to achieve high-precision motion control of EHAs, a RISE-based composite adaptive control scheme is proposed in this paper. In the proposed composite adaptive control design, a novel parameter adaptive law is synthesized to compensate for the parametric uncertainties and a robust integral of the sign of error (RISE) feedback is utilized to suppress the adverse effects caused by the lumped disturbances, including the velocity loop error of a servo motor and other unmodeled dynamics. The synthesized parameter adaptive law possesses the advantage of fast convergence, which is beneficial to achieve transient tracking performance improvement. In addition, the proposed controller is more suitable for practical applications since it is chattering free. The closed-loop system stability analysis shows that the proposed control scheme guarantees an excellent asymptotic tracking performance. Finally, comparative simulations are conducted to verify the high-performance nature of the proposed controller.


Author(s):  
Xiaofu Zhang ◽  
Guanglin Shi

This article presents a composite adaptive control method to improve the position-tracking performance of an electro-hydraulic system driven by dual constant displacement pump and dual servo motor named as a novel electro-hydraulic system with unknown disturbance. A composite adaptive controller based on backstepping method is designed to estimate the uncertainties of electro-hydraulic control system, including the damping coefficient and elastic modulus. In order to release the persistent excitation condition of conventional adaptive control, which is often infeasible in practice, a prediction error based on the online historical data is used to update the estimated parameters. Furthermore, a disturbance observer is used to estimate the disturbance including the unmeasurable load force, friction and other unmodeled disturbance. The experiment results are provided and compared with other methods to verify the effectiveness of the proposed method, and the results have indicated that the proposed method has a better position-tracking performance with the convergent estimated parameters.


Sign in / Sign up

Export Citation Format

Share Document