scholarly journals Poisson-Lie T-duality of WZW model via current algebra deformation

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Francesco Bascone ◽  
Franco Pezzella ◽  
Patrizia Vitale

Abstract Poisson-Lie T-duality of the Wess-Zumino-Witten (WZW) model having the group manifold of SU(2) as target space is investigated. The whole construction relies on the deformation of the affine current algebra of the model, the semi-direct sum $$ \mathfrak{su}(2)\left(\mathrm{\mathbb{R}}\right)\overset{\cdot }{\oplus}\mathfrak{a} $$ su 2 ℝ ⊕ ⋅ a , to the fully semisimple Kac-Moody algebra $$ \mathfrak{sl}\left(2,\mathrm{\mathbb{C}}\right)\left(\mathrm{\mathbb{R}}\right) $$ sl 2 ℂ ℝ . A two-parameter family of models with SL(2, ℂ) as target phase space is obtained so that Poisson-Lie T-duality is realised as an O(3, 3) rotation in the phase space. The dual family shares the same phase space but its configuration space is SB(2, ℂ), the Poisson-Lie dual of the group SU(2). A parent action with doubled degrees of freedom on SL(2, ℂ) is defined, together with its Hamiltonian description.

2012 ◽  
Vol 27 (10) ◽  
pp. 1250062
Author(s):  
CONSTANTIN BIZDADEA ◽  
MARIA-MAGDALENA BÂRCAN ◽  
MIHAELA TINCA MIAUTĂ ◽  
SOLANGE-ODILE SALIU

By means of a class of nondegenerate models with a finite number of degrees of freedom, it is proved that given a Hamiltonian formulation of dynamics, there exists an equivalent second-order Lagrangian formulation whose configuration space coincides with the Hamiltonian phase-space. The above result is extended to scalar field theories in a Lorentz-covariant manner.


The Hamiltonian description of massless spin zero- and one-fields in Minkowski space is first recast in a way that refers only to null infinity and fields thereon representing radiative modes. With this framework as a guide, the phase space of the radiative degrees of freedom of the gravitational field (in exact general relativity) is introduced. It has the structure of an infinite-dimensional affine manifold (modelled on a Fréchet space) and is equipped with a continuous, weakly non-degenerate symplectic tensor field. The action of the Bondi-Metzner-Sachs group on null infinity is shown to induce canonical transformations on this phase space. The corresponding Hamiltonians – i. e. generating functions – are computed and interpreted as fluxes of supermomentum and angular momentum carried away by gravitational waves. The discussion serves three purposes: it brings out, via symplectic methods, the universality of the interplay between symmetries and conserved quantities; it sheds new light on the issue of angular momentum of gravitational radiation; and, it suggests a new approach to the quantization of the ‘true’ degrees of freedom of the gravitational field.


2006 ◽  
Vol 21 (19n20) ◽  
pp. 3967-3988
Author(s):  
MANUEL A. COBAS ◽  
M. A. R. OSORIO ◽  
MARÍA SUÁREZ

We explicitly show that, in a system with T-duality symmetry, the configuration space volume degrees of freedom may hide on the surface boundary of the region of accessible states with energy lower than a fixed value. This means that, when taking the decompactification limit (big volume limit), a number of accessible states proportional to the volume is recovered even if no volume dependence appears when energy is high enough. All this behavior is contained in the exact way of computing sums by making integrals. We will also show how the decompactification limit for the gas of strings can be defined from a microcanonical description at finite volume.


Author(s):  
Flavio Mercati

This chapter explains in detail the current Hamiltonian formulation of SD, and the concept of Linking Theory of which (GR) and SD are two complementary gauge-fixings. The physical degrees of freedom of SD are identified, the simple way in which it solves the problem of time and the problem of observables in quantum gravity are explained, and the solution to the problem of constructing a spacetime slab from a solution of SD (and the related definition of physical rods and clocks) is described. Furthermore, the canonical way of coupling matter to SD is introduced, together with the operational definition of four-dimensional line element as an effective background for matter fields. The chapter concludes with two ‘structural’ results obtained in the attempt of finding a construction principle for SD: the concept of ‘symmetry doubling’, related to the BRST formulation of the theory, and the idea of ‘conformogeometrodynamics regained’, that is, to derive the theory as the unique one in the extended phase space of GR that realizes the symmetry doubling idea.


2015 ◽  
Vol 22 (04) ◽  
pp. 1550021 ◽  
Author(s):  
Fabio Benatti ◽  
Laure Gouba

When dealing with the classical limit of two quantum mechanical oscillators on a noncommutative configuration space, the limits corresponding to the removal of configuration-space noncommutativity and position-momentum noncommutativity do not commute. We address this behaviour from the point of view of the phase-space localisation properties of the Wigner functions of coherent states under the two limits.


1995 ◽  
Vol 10 (05) ◽  
pp. 441-450 ◽  
Author(s):  
R. PERCACCI ◽  
E. SEZGIN

We study the target space duality transformations in p-branes as transformations which mix the world volume field equations with Bianchi identities. We consider an (m+p+1)-dimensional space-time with p+1 dimensions compactified, and a particular form of the background fields. We find that while a GL (2) = SL (2) × R group is realized when m = 0, only a two-parameter group is realized when m > 0.


2018 ◽  
Vol 32 (33) ◽  
pp. 1850410 ◽  
Author(s):  
S. V. Talalov

In this paper, we construct the Hamiltonian description of the closed vortex filament dynamics in terms of non-standard variables, phase space and constraints. The suggested approach makes obvious interpretation of the considered system as a structured particle that possesses certain external and internal degrees of the freedom. The constructed theory is invariant under the transformation of Galilei group. The appearance of this group allows for a new viewpoint on the energy of a closed vortex filament with zero thickness. The explicit formula for the effective mass of the structured particle “closed vortex filament” is suggested.


1969 ◽  
Vol 12 (2) ◽  
pp. 209-212 ◽  
Author(s):  
J. E. Marsden

As is well known, there is an intimate connection between geodesic flows and Hamiltonian systems. In fact, if g is a Riemannian, or pseudo-Riemannian metric on a manifold M (we think of M as q-space or the configuration space), we may define a smooth function Tg on the cotangent bundle T*M (q-p-space, or the phase space). This function is the kinetic energy of q, and locally is given by


2007 ◽  
Vol 04 (05) ◽  
pp. 789-805 ◽  
Author(s):  
IGNACIO CORTESE ◽  
J. ANTONIO GARCÍA

The standard lore in noncommutative physics is the use of first order variational description of a dynamical system to probe the space noncommutativity and its consequences in the dynamics in phase space. As the ultimate goal is to understand the inherent space noncommutativity, we propose a variational principle for noncommutative dynamical systems in configuration space, based on results of our previous work [18]. We hope that this variational formulation in configuration space can be of help to elucidate the definition of some global and dynamical properties of classical and quantum noncommutative space.


Sign in / Sign up

Export Citation Format

Share Document