benzimidazole fungicides
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 11)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Constantinos Chrysikopoulos ◽  
Anastasios A. Malandrakis ◽  
Nektarios Kavroulakis ◽  
Anthi Stefanarou

<div><span>The potential of silver nanoparticles (Ag-NPs) to control plant pathogen <em>Monilia</em><em>fructicola </em>and to deter environmental contamination by reducing fungicide doses was evaluated <em>in vitro </em>and <em>in vivo. </em> </span>F<span>ungitoxicity screening </span>of <em><span>M. fructicola </span></em><span>isolates resulted in the detection of 18 benzimidazole-resistant (BEN-R) isolates with reduced sensitivity to fungicides  thiophanate methyl (TM)  and carbendazim. All resistant isolates caried the E198A resistance mutation in their </span><em><span>β</span>-</em>tubulin gene, target site of the benzimidazole fungicides. <span>Ag-NPs could effectively control both sensitive (BEN-S) and resistant isolates while the combination of Ag-NPs with TM significantly enhanced their fungitoxic effect both <em>in vitro </em>and in apple fruit tests. The positive correlation observed between Ag-NPs and TM+Ag-NPs treatments indicates a mixture-enhanced Ag-NPs activity/availability as a possible mechanism of synergy. No correlation between Ag-NPs  and AgNO<sub>3 </sub>could  be found suggesting difference(s) in the fungitoxic mechanism of action between Nps and their bulk/ionic counterparts. Indications of the involvement of energy (ATP) metabolism in the mode of action of Ag-NPs were also evident by the synergy observed between Ag-NPs and the </span>oxidative phosphorylation<span>-uncoupler fluazinam (FM) against both BEN-R and BEN-S phenotypes. The role of silver ions release on the inhibitory action of Ag-NPs against the fungusis probably limited since the AgNPs/NaCl combination enhanced fungitoxicity, a fact that could not be justified by the expected binding of silver with chlorine ions. Concluding, Ag-NPs can be effectively used as a means of controlling both BEN-S and BEN-R <em>M. </em><em>fructicola </em>isolates </span>while <span>their combination with conventional fungicides should aid anti-resistant strategies and reduce the environmental impact of synthetic fungicides by reducing effective doses to the control the pathogen.</span></div>


2020 ◽  
Vol 24 (2) ◽  
pp. 163-171
Author(s):  
Jae-Cheol Lee ◽  
Yu-Na Jeon ◽  
Myoung-Hwa Jung ◽  
Yu-Jin Kim ◽  
InCheol Park ◽  
...  

Author(s):  
Shaan Bibi Jaffri ◽  
Khuram Shahzad Ahmad ◽  
Mishkat Ul Saba ◽  
Gulistan Sher ◽  
Maham Sharif

Soil and soil minerals are the primary recipients of different contaminates coming in immediate contact.Agricultural practices which are dominated by use of different agrochemicals have further aggravated the soil quality.Fungicides, aimed at the extermination, inhibition and growth retardation of fungal species in agricultural crops havebeen used frequently. Among such fungicides, Benzimidazole based fungicides are of prime significance due to theircomparatively improved annihilatory activity. Despite such frequent utilization, the reports on the reception andconsequent sorption of Benzimidazole fungicides are scarce. Current work has, for the first time, investigated theinteraction of Benzimidazole based fungicide, Mecarzole (metabolite of Benomyl fungicide and also known asCarbendazim) in the selected minerals i.e. corundum (alumina), silica, muscovite and montmorillonite. The interactionwas studied via standard equilibration method established in batches. Adsorption and desorption of Mecarzole in theselected minerals was evaluated by multilayer Linear and Freundlich model for different parameters i.e. Kd, Kf, Kfdesand Kdes. Linearity was exhibited by the minerals for attachment of Mecarzole. The highest values of Kd (6.93 mL. µg-1) and Kf (7.99 mL. µg-1) obtained for muscovite are indicative of the higher affinity of muscovite for Mecarzole incomparison to other three minerals. Excellent adsorption of Mecarzole in muscovite is suggestive of the fact thatMecarzole interacting with muscovite is not a threat towards lower soil profiles since there is a stronger bonding. Incontrast to muscovite, Mecarzole poorly adsorbed in alumina represents a threat to soils due to possible percolation ofpoorly adsorbed Mecarzole molecules.


2019 ◽  
Vol 10 (2) ◽  
pp. 50-54
Author(s):  
Shaan Bibi Jaffri ◽  
Khuram Shahzad Ahmad ◽  
Mishkat Ul Saba ◽  
Gulistan Sher ◽  
Maham Sharif

Soil and soil minerals are the primary recipients of different contaminates coming in immediate contact.Agricultural practices which are dominated by use of different agrochemicals have further aggravated the soil quality.Fungicides, aimed at the extermination, inhibition and growth retardation of fungal species in agricultural crops havebeen used frequently. Among such fungicides, Benzimidazole based fungicides are of prime significance due to theircomparatively improved annihilatory activity. Despite such frequent utilization, the reports on the reception andconsequent sorption of Benzimidazole fungicides are scarce. Current work has, for the first time, investigated theinteraction of Benzimidazole based fungicide, Mecarzole (metabolite of Benomyl fungicide and also known asCarbendazim) in the selected minerals i.e. corundum (alumina), silica, muscovite and montmorillonite. The interactionwas studied via standard equilibration method established in batches. Adsorption and desorption of Mecarzole in theselected minerals was evaluated by multilayer Linear and Freundlich model for different parameters i.e. Kd, Kf, Kfdesand Kdes. Linearity was exhibited by the minerals for attachment of Mecarzole. The highest values of Kd (6.93 mL. µg-1) and Kf (7.99 mL. µg-1) obtained for muscovite are indicative of the higher affinity of muscovite for Mecarzole incomparison to other three minerals. Excellent adsorption of Mecarzole in muscovite is suggestive of the fact thatMecarzole interacting with muscovite is not a threat towards lower soil profiles since there is a stronger bonding. Incontrast to muscovite, Mecarzole poorly adsorbed in alumina represents a threat to soils due to possible percolation ofpoorly adsorbed Mecarzole molecules.


Sign in / Sign up

Export Citation Format

Share Document