scholarly journals 3D-Printed Quasi-Absolute Electromagnetic Encoders for Chipless-RFID and Motion Control Applications

Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1154
Author(s):  
Ferran Paredes ◽  
Cristian Herrojo ◽  
Ferran Martín

This paper presents electromagnetic encoders useful for chipless-RFID and motion control applications. The encoders consist in a pair of linear chains of rectangular apertures implemented by means of 3D printing. One of these chains is periodic and acts as a clock, whereas the other chain contains an identification (ID) code. With these two aperture chains, the ID code can be synchronously read, so that the relative velocity between the tag and the reader is irrelevant. Additionally, it is shown in the paper that by properly designing the reader, it is possible to determine the motion direction. The sensitive part of the reader is a microstrip line loaded with three complementary split ring resonators (CSRRs) etched in the ground plane and fed by three harmonic signals. By encoder motion, the characteristics of the local medium surrounding the CSRRs are modified, and the harmonic signals are amplitude modulated (AM) at the output port of the line, thereby providing the clock signal (which gives the encoder velocity), the ID code (providing also the quasi-absolute position) and the direction of motion. A fabricated prototype encoder is characterized by reading it with a dedicated reader.

2017 ◽  
Vol 17 (15) ◽  
pp. 4805-4813 ◽  
Author(s):  
Cristian Herrojo ◽  
Javier Mata-Contreras ◽  
Ferran Paredes ◽  
Ferran Martin

DYNA ◽  
2015 ◽  
Vol 82 (193) ◽  
pp. 9-15
Author(s):  
Iván Eduardo Díaz Pardo ◽  
Carlos Arturo Suárez Fajardo ◽  
Gustavo Adolfo Puerto Leguizamón

This paper presents the study of the ground plane effect in passband filters using metamaterial cells in Open Split Ring Resonators (OSRR) structures on microstrip substrates. Three different configurations have been proposed, namely: by removing partially the ground plane of the OSRR cell back end, by windows design over the ground plane at the back end of each cell and by placing a full ground plane. The conducted analysis shows that the filter transmission response featuring a ground plane including windows proved to be the most flattened with the middle bandwidth of the three configurations. On the other hand, the performance of these filters is similar to a conventional filter based on three-pole microstrip technology but with a considerable reduction in size of about 60%.


2022 ◽  
pp. 1-1
Author(s):  
Abdelrahman Khalil ◽  
Khaled F. Aljanaideh ◽  
Mohammad Al Janaideh

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. M. Islam ◽  
M. R. I. Faruque ◽  
M. T. Islam

A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm2, and VSWR < 2, observing band elimination of 5.5 GHz WLAN band.


Sign in / Sign up

Export Citation Format

Share Document