patellar kinematics
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 7)

H-INDEX

14
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7644
Author(s):  
Adrian Sauer ◽  
Maeruan Kebbach ◽  
Allan Maas ◽  
William M. Mihalko ◽  
Thomas M. Grupp

A correlation between patellar kinematics and anterior knee pain is widely accepted. However, there is no consensus on how they are connected or what profile of patellar kinematics would minimize anterior knee pain. Nevertheless, answering this question by merging existing studies is further complicated by the variety of ways to describe patellar kinematics. Therefore, this study describes the most frequently used conventions for defining patellar kinematics, focusing on the rotations. The similarities and differences between the Cardan sequences and angles calculated by projecting axes are analyzed. Additionally, a tool is provided to enable the conversion of kinematic data between definitions in different studies. The choice of convention has a considerable impact on the absolute values and the clinical characteristics of the patello-femoral angles. In fact, the angles that result from using different mathematical conventions to describe a given patello-femoral rotation from our analyses differ up to a Root Mean Squared Error of 111.49° for patellar flexion, 55.72° for patellar spin and 35.39° for patellar tilt. To compare clinical kinematic patello-femoral results, every dataset must follow the same convention. Furthermore, researchers should be aware of the used convention’s implications to ensure reproducibility when interpreting and comparing such data.


2021 ◽  
pp. 036354652110314
Author(s):  
Robert C. Spang ◽  
Amirhossein Jahandar ◽  
Kathleen N. Meyers ◽  
Joseph T. Nguyen ◽  
Suzanne A. Maher ◽  
...  

Background: The distribution of contact forces across the dysplastic patellofemoral joint has not been adequately quantified because models cannot easily mimic the dysplasia of both the trochlea and the patella. Thus, the mechanical consequences of surgical treatments to correct dysplasia cannot be established. Purpose/Hypothesis: The objective of this study was to quantify the contact mechanics and kinematics of normal, mild, and severely dysplastic patellofemoral joints using synthetic mimics of the articulating surfaces on cadavers. We tested the hypothesis that severely dysplastic joints would result in significantly increased patellofemoral contact forces and abnormal kinematics. Study Design: Controlled laboratory study. Method: Patellofemoral dysplasia was simulated in 9 cadaveric knees by replacing the native patellar and trochlear surfaces with synthetic patellar and trochlear implants. For each knee, 3 synthetic surface geometries (normal, showing no signs of dysplasia; mild, exemplifying Dejour type A; and severe, exemplifying Dejour type B) were randomized for implantation and testing. Patellar kinematics and the sum of forces acting on the medial and lateral patellar facets were computed for each knee and for each condition at 10° increments from 0° to 70° of flexion. Results: A pronounced lateral shift in the weighted center of contact of the lateral facet occurred for severely dysplastic knees from 20° to 70° of flexion. Compared with normal geometries, lateral patellar facet forces exhibited a significant increase only with mild dysplasia from 50° to 70° of flexion and with severe dysplasia at 70° of flexion. No measurable differences in medial patellar facet mechanics or joint kinematics occurred. Conclusion: Our hypothesis was rejected: Severely dysplastic joints did not result in significantly increased patellofemoral contact forces and abnormal kinematics in our cadaveric simulation. Rather, severe dysplasia resulted in a pronounced lateral shift in contact forces across the lateral patellar facet, while changes in kinematics and the magnitude of contact forces were not significant. Clinical Relevance: Including dysplasia of both the patella and trochlea is required to fully capture the mechanics of this complex joint. The pronounced lateralization of contact force in severely dysplastic patellofemoral joints should be considered to avoid cartilage overload with surgical manipulation.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Silvia V. Lehmann ◽  
Emanuel Andrada ◽  
Roxana Taszus ◽  
Daniel Koch ◽  
Martin S. Fischer

Abstract Background French bulldogs exhibit significantly larger femoral external rotation and abduction than other breeds. We were curious as to whether this peculiar leg kinematic affects patellar motion and/or might induce medial patellar subluxation (MPSL) or medial patellar permanent luxation (MPPL). We hypothesized that the more abducted leg posture during stance causes an unusual medial pull direction of the rectus femoris muscle during stance, and that this may facilitate the occurrence of MPSL or even MPPL during locomotion. To test our hypothesis, we analyzed existing stifle-joint X-ray-sequences collected during the treadmill walk and trot of seven adult female French bulldogs. We estimated 3D-patellar kinematics using Scientific Rotoscoping. Results The three-dimensional motion of the patella comprises rotations and translations. From the seven dogs analyzed, three exhibited MPSL and one MPPL during the gait cycle. Medial patellar luxation (MPL) occurred mostly around toe-off in both gaits studied. Patellar position was generally not gait-related at the analyzed timepoints. In dogs with MPL, the patella was placed significantly more distally (p = 0.037) at touch-down (TD) and at midswing (p = 0.024), and significantly more medial at midswing (p = 0.045) compared to dogs without MPL. Conclusions Medial patellar luxation seems to be the consequence of the far from parasagittal position of the stifle joint during stance due to a broad trunk, and a wide pelvis. This peculiar leg orientation leads to a medial sideway pull caused by the rectus femoris muscle and the quadriceps femoris and may initiate plastic deformation of the growing femur and tibia. Thus, a way to avoid MPL could be to control breeding by selecting dogs with lean bodies and narrow pelvis. Actual breeding control programs based on the orthopedic examination are susceptible to errors. Systematic errors arise from the fact that the grading system is highly dependent on the dog’s condition and the veterinarians’ ability to perform the palpation on the stifle. Based on our results, the position of the patella at TD, or even perhaps during stand might offer a possibility of an objective radioscopic diagnostic of the MPL.


2020 ◽  
Vol 48 (14) ◽  
pp. 3557-3565
Author(s):  
Sheena R. Black ◽  
Kathleen N. Meyers ◽  
Joseph T. Nguyen ◽  
Daniel W. Green ◽  
Jacqueline M. Brady ◽  
...  

Background: Adult medial patellofemoral ligament (MPFL) reconstruction techniques are not appropriate for the skeletally immature patient given the proximity of the distal femoral physis. Biomechanical consequences of reconstructions aimed at avoiding the physis have not been adequately studied. Purpose: To quantify the biomechanical effects of MPFL reconstruction techniques intended for skeletally immature patients. Study Design: Controlled laboratory study Methods: Four MPFL reconstruction techniques were evaluated using a computationally augmented cadaveric model: (1) Schoettle point: adult-type reconstruction; (2) epiphyseal: socket distal to the femoral physis; (3) adductor sling: graft wrapped around the adductor tendon; (4) adductor transfer: adductor tendon transferred to patella. A custom testing frame was used to cycle 8 knees for each technique from 10° to 110° of flexion. Patellofemoral kinematics were recorded using a motion camera system, contact stresses were recorded using Tekscan pressure sensors, and MPFL length was computed using an inverse kinematics computational model. Change in MPFL length, patellar facet forces, and patellar kinematics were compared using generalized estimating equation modeling. Results: Schoettle point reconstruction was the most isometric, demonstrating isometry from 10° to 100°. The epiphyseal technique was isometric until 60°, after which the graft loosened with increasing flexion. The adductor sling and adductor transfer techniques were significantly more anisometric from 40° to 110°. Both grafts tightened with knee flexion and resulted in significantly more lateral patellar tilt versus the intact state in early flexion and significantly higher contact forces on the medial facet versus the epiphyseal technique in late flexion. Conclusion: In this cadaveric simulation, the epiphyseal technique allowed for a more isometric ligament until midflexion, when the patella engaged within the trochlear groove. The adductor sling and adductor transfer grafts became tighter in flexion, resulting in potential loss of motion, pain, graft stretching, and failure. Marginal between-condition differences in patellofemoral contact mechanics and patellar kinematics were observed in late flexion. Clinical Relevance: In the skeletally immature patient, using an epiphyseal type MPFL reconstruction with the femoral attachment site distal to the physis results in a more isometric graft compared with techniques with attachment sites proximal to the physis.


2018 ◽  
Vol 27 (5) ◽  
pp. 1529-1534 ◽  
Author(s):  
Armin Keshmiri ◽  
Günther Maderbacher ◽  
Clemens Baier ◽  
Achim Benditz ◽  
Joachim Grifka ◽  
...  

2018 ◽  
Vol 46 (12) ◽  
pp. 2922-2928 ◽  
Author(s):  
Eivind Inderhaug ◽  
Joanna M. Stephen ◽  
Andy Williams ◽  
Andrew A. Amis

Background: Anterolateral complex injuries are becoming more recognized. While these are known to affect tibiofemoral mechanics, it is not known how they affect patellofemoral joint behavior. Purpose: To determine the effect of (1) sectioning the anterolateral complex and (2) performing a MacIntosh tenodesis under various conditions on patellofemoral contact mechanics and kinematics. Study Design: Controlled laboratory study. Methods: Eight fresh-frozen cadaveric knees were tested in a customized rig, with the femur fixed and tibia free to move, with optical tracking to record patellar kinematics and with thin pressure sensors to record patellofemoral contact pressures at 0°, 30°, 60°, and 90° of knee flexion. The quadriceps and iliotibial tract were loaded with 205 N throughout testing. Intact and anterolateral complex–sectioned states were tested, followed by 4 randomized tenodeses applying 20- and 80-N graft tension, each with the tibia in its neutral intact alignment or left free to rotate. Statistical analyses were undertaken with repeated measures analysis of variance, Bonferroni post hoc analysis, and paired samples t tests. Results: Patellar kinematics and contact pressures were not significantly altered after sectioning of the anterolateral complex (all: P > .05). Similarly, they were not significantly different from the intact knee in tenodeses performed when fixed tibial rotation was combined with 20- or 80-N graft tension (all: P > .05). However, grafts tensioned with 20 N and 80 N while the tibia was free hanging resulted in significant increases in lateral patellar tilt ( P < .05), and significantly elevated lateral peak patellofemoral pressures ( P < .05) were observed for 80 N. Conclusion: This work did not find that an anterolateral injury altered patellofemoral mechanics or kinematics, but adding a lateral tenodesis can elevate lateral contact pressures and induce lateral patellar tilting if the tibia is pulled into external rotation by the tenodesis. Although these in vitro changes were small and might not be relevant in a fully loaded knee, controlling the position of the tibia at graft fixation is effective in avoiding overconstraint at time zero in a lateral tenodesis. Clinical Relevance: Small changes in lateral patellar tilt and patellofemoral contact pressures were found at time zero with a MacIntosh tenodesis. These changes were eliminated when the tibia was held in neutral rotation at the time of graft fixation. The risk of overconstraint after a lateral tenodesis therefore seems low and in accordance with recent published reports.


2018 ◽  
Vol 3 (4) ◽  
pp. 106-113 ◽  
Author(s):  
Simon Donell

This is a review of the recent literature of the various factors that affect patellar tracking following total knee arthroplasty (TKA). Patellar tracking principally depends on the pre-existing patellar tracking and the rotational alignment of the femoral and tibial implants, but the detailed movements depend on the patellar shape. The latter means that the patellar kinematics of any implanted TKA does not return to normal. Laboratory cadaveric studies use normal knees and non-activity-based testing conditions and so may not translate into clinical findings. The recent literature has not added anything significant to change established clinical practice in achieving satisfactory patellar tracking following TKA. Cite this article: EFORT Open Rev 2018;3:106-113. DOI: 10.1302/2058-5241.3.170036.


Sign in / Sign up

Export Citation Format

Share Document