scholarly journals Creatine transporter deficient rat model shows motor dysfunction, cerebellar alterations and muscle creatine deficiency without muscle atrophy

Author(s):  
Lara Duran‐Trio ◽  
Gabriella Fernandes‐Pires ◽  
Jocelyn Grosse ◽  
Ines Soro‐Arnaiz ◽  
Clothilde Roux‐Petronelli ◽  
...  
2020 ◽  
Author(s):  
Lara Duran-Trio ◽  
Gabriella Fernandes-Pires ◽  
Dunja Simicic ◽  
Jocelyn Grosse ◽  
Clothilde Roux ◽  
...  

ABSTRACTCreatine is an organic compound used as fast phosphate energy buffer to recycle ATP, important in tissues with high energy demand such as muscle or brain. Creatine is taken from the diet or endogenously synthetized by the enzymes AGAT and GAMT, and specifically taken up by the transporter SLC6A8. Deficit in the endogenous synthesis or in the transport leads to Cerebral Creatine Deficiency Syndromes (CCDS). CCDS are characterized by brain creatine deficiency, intellectual disability with severe speech delay, behavioral troubles such as attention deficits and/or autistic features, and epilepsy. Among CCDS, the X-linked creatine transporter deficiency (CTD) is the most prevalent with no efficient treatment so far. Different mouse models of CTD were generated by doing long deletions in the Slc6a8 gene showing reduced brain creatine and cognitive deficiencies or impaired motor function. We present a new knock-in (KI) rat model of CTD holding an identical point mutation found in patients with reported lack of transporter activity. KI males showed brain creatine deficiency, increased urinary creatine/creatinine ratio, cognitive deficiency and autistic features. Slc6a8xY389C KI rat fairly enriches the spectrum of CTD models and provides new data about the pathology, being the first animal model of CTD carrying a point mutation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lara Duran-Trio ◽  
Gabriella Fernandes-Pires ◽  
Dunja Simicic ◽  
Jocelyn Grosse ◽  
Clothilde Roux-Petronelli ◽  
...  

AbstractCreatine is an organic compound used as fast phosphate energy buffer to recycle ATP, important in tissues with high energy demand such as muscle or brain. Creatine is taken from the diet or endogenously synthetized by the enzymes AGAT and GAMT, and specifically taken up by the transporter SLC6A8. Deficit in the endogenous synthesis or in the transport leads to Cerebral Creatine Deficiency Syndromes (CCDS). CCDS are characterized by brain creatine deficiency, intellectual disability with severe speech delay, behavioral troubles such as attention deficits and/or autistic features, and epilepsy. Among CCDS, the X-linked creatine transporter deficiency (CTD) is the most prevalent with no efficient treatment so far. Different mouse models of CTD were generated by doing long deletions in the Slc6a8 gene showing reduced brain creatine and cognitive deficiencies or impaired motor function. We present a new knock-in (KI) rat model of CTD holding an identical point mutation found in patients with reported lack of transporter activity. KI males showed brain creatine deficiency, increased urinary creatine/creatinine ratio, cognitive deficits and autistic-like traits. The Slc6a8Y389C KI rat fairly enriches the spectrum of CTD models and provides new data about the pathology, being the first animal model of CTD carrying a point mutation.


2021 ◽  
Author(s):  
Lara Duran-Trio ◽  
Gabriella Fernandes-Pires ◽  
Jocelyn Grosse ◽  
Ines Soro-Arnaiz ◽  
Clothilde Roux-Petronelli ◽  
...  

Creatine (Cr) is a nitrogenous organic acid and plays roles as fast phosphate energy buffer to replenish ATP, osmolyte, antioxidant, neuromodulator, and as a compound with anabolic and ergogenic properties in muscle. Cr is taken from the diet or endogenously synthetized by the enzymes AGAT and GAMT, and specifically taken up by the transporter SLC6A8. Loss-of-function mutations in the genes encoding for the enzymes or the transporter cause Cerebral Creatine Deficiency Syndromes (CCDS). CCDS are characterized by brain Cr deficiency, intellectual disability with severe speech delay, behavioral troubles, epilepsy and motor dysfunction. Among CCDS, the X-linked Cr transporter deficiency (CTD) is the most prevalent with no efficient treatment so far. Different animal models of CTD show reduced brain Cr levels, cognitive deficiencies and together they cover other traits similar to those of patients. However, motor function was poorly explored in CTD models and some controversies in the phenotype exist in comparison with CTD patients. Our recently described Slc6a8Y389C knock-in (KI) rat model of CTD showed mild impaired motor function linked with morphological alterations in cerebellum, reduced muscular mass, Cr deficiency and increased guanidinoacetate content in muscle, although no consistent signs of muscle atrophy. Our results indicate that such motor dysfunction is due to both nervous and muscle dysfunction, suggesting that muscle strength and performance as well as neuronal connectivity might be affected by this Cr deficiency in muscle and brain.


2001 ◽  
Vol 49 (3) ◽  
pp. 401-404 ◽  
Author(s):  
Kim M. Cecil ◽  
Gajja S. Salomons ◽  
William S. Ball ◽  
Brenda Wong ◽  
Gail Chuck ◽  
...  

F1000Research ◽  
2015 ◽  
Vol 3 ◽  
pp. 228
Author(s):  
Laura Baroncelli ◽  
Maria Grazia Alessandrì ◽  
Jonida Tola ◽  
Elena Putignano ◽  
Martina Migliore ◽  
...  

Mutations in the creatine (Cr) transporter (CrT) gene lead to cerebral creatine deficiency syndrome-1 (CCDS1), an X-linked metabolic disorder characterized by cerebral Cr deficiency causing intellectual disability, seizures, movement  and behavioral disturbances, language and speech impairment ( OMIM #300352).CCDS1 is still an untreatable pathology that can be very invalidating for patients and caregivers. Only two murine models of CCDS1, one of which is an ubiquitous knockout mouse, are currently available to study the possible mechanisms underlying the pathologic phenotype of CCDS1 and to develop therapeutic strategies. Given the importance of validating phenotypes and efficacy of promising treatments in more than one mouse model we have generated a new murine model of CCDS1 obtained by ubiquitous deletion of 5-7 exons in the Slc6a8 gene. We showed a remarkable Cr depletion in the murine brain tissues and cognitive defects, thus resembling the key features of human CCDS1. These results confirm that CCDS1 can be well modeled in mice. This CrT−/y murine model will provide a new tool for increasing the relevance of preclinical studies to the human disease.


2020 ◽  
Author(s):  
Yan Zhu ◽  
Lixue Wu ◽  
Qiuxiang Zhou ◽  
Yueyue Yan ◽  
Jinlong Qu ◽  
...  

Abstract Spinal cord injury (SCI) main cause of motor dysfunction results in loss of feelings partially or completely. The current study investigated indirubin-3′-oxime (IR3O) for treatment of SCI in rat model and evaluated the related mechanism. Rats in model SCI and ID30 groups were subjected to laminectomy at 8th thoracic vertebra level. Vertebral column was secured by clamping T6 and T10 and SCI model was established by dripping a hammer. Treatment groups received 0.25, 0.5, 0.75 and 1.0 mg/kg doses of ID30 daily for 2-weeks post-surgery. Treatment with ID30 effectively improved BBB score in rats with SCI in dose-based manner. Accumulation of water in spinal cord tissues was alleviated significantly on treatment of SCI rats with ID30. ID30 treatment significantly alleviated SCI mediated higher serum levels of TNF-α and cytokines (IL-1β and IL-6) in SCI rats. In ID30 treated SCI rats SOD, CAT and GSH activities were significantly alleviated. The SCI mediated increased cleaved caspase-3 and -9 levels were alleviated by ID30 treatment significantly. Moreover, ID30 treatment suppressed SCI mediated elevation of PGE2, COX‑2 levels and significantly (P<0.05) elevated PPAR-γ expression. The ID30 treatment of SCI rats significantly (P<0.05) elevated PI3K and Akt phosphorylation. Thus, ID30 inhibited edema and improved BBB score in rats with SCI by targeting pro-inflammatory cytokines and oxidative response. Moreover, in SCI rats ID30 treatment down-regulated apoptotic proteins, promoted PPAR-γ activation and elevated PI3K/Akt phosphorylation. Thus, ID30 has potential to be studied further for development of therapeutic strategy for SCI.


2020 ◽  
Vol 22 ◽  
pp. 67-72
Author(s):  
Jichun Xu ◽  
Guorong She ◽  
Tao Gui ◽  
Huige Hou ◽  
Jieruo Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document