scholarly journals Evaluation of the Explosion Pressure Parameters in Flameproof Enclosures under the Pressure Piling Condition

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8156
Author(s):  
Dong Li ◽  
Shijie Dai ◽  
Tao Lin

Explosion resistance is one of the most important performances for all flameproof enclosures. Pressure piling requires the flameproof enclosures to withstand explosion pressure higher than the design pressure. In order to study the explosion parameters in a flameproof enclosure under pressure piling, two experimental setups were prepared based on the theoretical analysis of the mechanism of pressure piling. One setup simulated the condition that the interior of a flameproof box is isolated by a baffle with a small hole. Another setup simulated the condition that a large number of electrical components were installed inside an explosion-proof box. The experimental result showed that the explosion pressure increased significantly in a very short time under pressure piling. When an explosion occurred in a cavity, the pressure wave of the explosion propagated faster than the flame propagation, and the pressure wave was transmitted to another cavity through a gas channel between the two cavities. This resulted in the pre-pressurization of the combustible gas in another cavity. It was observed that the ignition time in the cavity with an ignition source, is the key factor for pressure piling.

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Daisuke Fujiwara ◽  
Naoki Tsujikawa ◽  
Tetsuya Oshima ◽  
Kojiro Iizuka

Abstract Planetary exploration rovers have required a high traveling performance to overcome obstacles such as loose soil and rocks. Push-pull locomotion rovers is a unique scheme, like an inchworm, and it has high traveling performance on loose soil. Push-pull locomotion uses the resistance force by keeping a locked-wheel related to the ground, whereas the conventional rotational traveling uses the shear force from loose soil. The locked-wheel is a key factor for traveling in the push-pull scheme. Understanding the sinking behavior and its resistance force is useful information for estimating the rover’s performance. Previous studies have reported the soil motion under the locked-wheel, the traction, and the traveling behavior of the rover. These studies were, however, limited to the investigation of the resistance force and amount of sinkage for the particular condition depending on the rover. Additionally, the locked-wheel sinks into the soil until it obtains the required force for supporting the other wheels’ motion. How the amount of sinkage and resistance forces are generated at different wheel sizes and mass of an individual wheel has remained unclear, and its estimation method hasn’t existed. This study, therefore, addresses the relationship between the sinkage and its resistance force, and we analyze and consider this relationship via the towing experiment and theoretical consideration. The results revealed that the sinkage reached a steady-state value and depended on the contact area and mass of each wheel, and the maximum resistance force also depends on this sinkage. Additionally, the estimation model did not capture the same trend as the experimental results when the wheel width changed, whereas, the model captured a relatively the same trend as the experimental result when the wheel mass and diameter changed.


Author(s):  
Qian Sun ◽  
Tianji Peng ◽  
Zhiwei Zhou ◽  
Zhibin Chen ◽  
Jieqiong Jiang

Dual-functional Lithium Lead Test Blanket Module (DFLL-TBM) was proposed by China for testing in the International Thermonuclear Experimental Reactor (ITER).When an in-TBM helium coolant tube breaks, high pressure helium will discharge into the Pb-Li breeding zones. The pressure shock in the TBM will threaten the structural integrity and safety of ITER. Simulation and analysis on helium coolant tube break accident of DFLL-TBM was performed, and two cases with different break sizes were considered. Computational results indicate that intense pressure waves spread quickly from the break to the surrounding structures and the variation of pressure in the TBM breeding box is drastic especially when the pressure wave propagation encounters large resistance such as at the bending corner of the flow channel, the inlet and outlet of Pb-Li, etc. The maximum pressure in the TBM breeding box which is even higher than the operating pressure of helium also occurs in these zones. Although the pressure shock lasts for a very short time, its effect on the structural integrity of DFLL-TBM needs to be paid attention to.


2019 ◽  
Vol 1 (2) ◽  
pp. 19-31
Author(s):  
Kalaivani S ◽  
Shalini Dhiman ◽  
Rajagopal T.K.P.

Emergency Department (ED) boarding –the inability to transfer emergency patients to inpatient beds- is a key factor contributing to ED overcrowding. This paper presents a novel approach to improving hospital operational efficiency and, therefore, to decreasing ED boarding. Using the historic data of 15,000 patients, admission results and patient information are correlated in order to identify important admission predictor factors. For example, the type of radiology exams prescribed by the ED physician is identified as among the most important predictors of admission. Based on these  factors, a  real-time prediction  model is  developed which  is able  to correctly predict  the  admission  result  of  four  out  of  every  five  ED  patients.  The  proposed admission  model  can  be  used  by inpatient  units  to  estimate  the  likelihood  of ED patients’ admission, and consequently, the number of incoming patients from ED in the near future. Using  similar prediction models,  hospitals can evaluate their short-time needs for inpatient care more accurately Emergency Department (ED) boarding – the inability to transfer emergency patients to inpatient beds- is a key factor contributing to ED overcrowding. This paper presents a novel approach to improving hospital operational efficiency and, therefore, to decreasing ED boarding. Using the historic data of 15,000 patients, admission results and patient information are correlated in order to identify important admission predictor factors. For example, the type of radiology exams prescribed by the ED physician is identified as among the most important predictors of admission. The proposed admission model can be used by inpatient units to estimate the likelihood of ED patients’ admission, and consequently, the number of incoming patients from ED in the near future. Using similar prediction models, hospitals can evaluate their short-time needs for inpatient care more accurately. We use three algorithms to build the predictive models: (1) logistic regression, (2) decision trees, and Analytic tools (accuracy=80.31%, AUC-ROC=0.859) than the decision tree accuracy=80.06%, AUC-ROC=0.824) and the logistic regression model (accuracy=79.94%, AUC-ROC=0.849). Drawing on logistic regression, we identify several factors related to hospital admissions including hospital site, age, arrival mode, triage category, care group, previous admission in the past month, and previous admission in the past year. From a different perspective, the research focuses on mobility data instead of personal data in general using Structural Equation Modelling analysis method. Based on this research finding, we identified an unexplored factor that can be used to predict the intention to disclose mobility data, and the result also confirmed that context aspects such as demographics and different personal data categories.


2014 ◽  
Vol 28 (29) ◽  
pp. 1450226 ◽  
Author(s):  
Zun Cai ◽  
Zhen-Guo Wang ◽  
Ming-Bo Sun ◽  
Hong-Bo Wang ◽  
Jian-Han Liang

Ethylene spark ignition experiments were conducted based on an variable energy igniter at the inflow conditions of Ma = 2.1 with stagnation state T0 = 846 K , P0 = 0.7 MPa . By comparing the spark energy and spark frequency of four typical operation conditions of the igniter, it is indicated that the spark energy determines the scale of the spark and the spark existing time. The spark frequency plays a role of sustaining flame and promoting the formation and propagation of the flame kernel, and it is also the dominant factor determining the ignition time compared with the spark energy. The spark power, which is the product of the spark energy and spark frequency, is the key factor affecting the ignition process. For a fixed spark power, the igniter operation condition of high spark frequency with low spark energy always exhibits a better ignition ability. As approaching the lean fuel limit, only the igniter operation condition (87 Hz and 3.0 J) could achieve a successful ignition, where the other typical operation conditions (26 Hz and 10.5 J, 247 Hz and 0.8 J, 150 Hz and 1.4 J) failed.


Author(s):  
Roberto Raffaeli ◽  
Paolo Cicconi ◽  
Maura Mengoni ◽  
Michele Germani

The offer of tailored products is a key factor to satisfy specific customer needs in the current competitive market. Modular products can easily support customization in a short time. Design process, in this case, can be regarded as a configuration task where solution is achieved through the combination of modules in overall product architecture. In this scenario efficient configuration design tools are evermore important. Although many tools have been already proposed in literature, they need further investigation to be applicable in real industrial practice, because of the high efforts required to implement system and the lack of flexibility in products updating. This work describes an approach to overcome drawbacks and to introduce a product independent configuration system which can be useful in designing recurrent product modules. To manage configuration from the designer perspective, the approach is based on Configurable Virtual Prototypes (CVP). In particular, the definition of geometrical models is analyzed providing a tool for eliciting and reusing knowledge introduced by parametric template CAD models. Semantic rules are used to recognize parts parameterization and assembly mating constraints. The approach is exemplified through a case study.


Author(s):  
Wolf Reinhardt ◽  
Xinjian Duan

The result of a burst test of a thinned straight pipe with local thinning is reported. The locally thinned region had a thickness well below the NB-3600 pressure based Design thickness. The burst pressure is compared with the maximum Design pressure obtained from a variety of elastic-plastic analysis methods, such as plastic limit analysis and the Section VIII Div. 2 elastic-plastic design method.


2012 ◽  
Vol 220-223 ◽  
pp. 1271-1276
Author(s):  
Wan Lei Liang ◽  
Xiao Dan Guan

The mounting process is the key factor of the placement efficiency, it is also important for the improvement of the efficiency of whole production line and decrease of the cost. This paper analyzed the mounting process of the Chip Shooter machine, applied the PSO algorithm, constructed the corresponding coding system, proposed the corresponding particle update mechanism, introduced the partially matched crossover idea of the genetic algorithm into the PSO algorithm, and designed the new re-scheduling method of feeder position assignment to optimize the position assignment of feeders and the pickup and placement sequence of components, thus improved the placement efficiency. After comparing the results before and after the simulation test for selected 8 pieces of PCB, the average efficiency of this algorithm is 7.09% higher than genetic algorithm method that is based on sort encoding. The experimental result shows that, this algorithm is more efficiency on the improvement placement efficiency and decrease of the placement time for the chip shooter machine.


2013 ◽  
Vol 23 (2) ◽  
pp. 222-236
Author(s):  
Maizatul Haizan Mahbob ◽  
Wan Idros Wan Sulaiman ◽  
Samsudin A. Rahim ◽  
Wan Azreena Wan Jaafar ◽  
Wan Sharazad Wan Sulaiman

Innovation is a key factor to bring about change. The government should formulate policies that are innovative to bring change to the nation. A government that enhances transformation, is a dynamic and progressive government. The Government Transformation Programme (GTP) in Malaysia, that is implemented in three phases started in 2010, is studied to examine how the programme is being accepted by the people. GTP is a programme that has never been implemented before. This programme emphasises more on performance and results of civil servants rather than budget spending. It also emphasises more accurately on planning. The aim is to produce high levels of accuracy and accountability of public employees and to provide rapid results in a short time as desired by the people. The 2011 GTP report showed that more than three million people have been positively impacted by this programme although it has only been implemented for two years. However, empirical studies found that people did not really feel the impact of the GTP programme. Although this programme was advocated through electronic and on-line media, many people still do not understand what is exactly the GTP and what are to be achieved through this programme.


2019 ◽  
Author(s):  
Matt Hawrilenko ◽  
Katherine E. Masyn ◽  
Janine Cerutti ◽  
Erin C. Dunn

AbstractStudies of developmental trajectories of depression are important for understanding its etiology. Existing studies have been limited by short time frames and no studies have explored a key factor: differential patterns of responding to life events. This paper introduces a novel analytic technique, growth mixture modeling with structured residuals, to examine the course of youth depression symptoms in a large, prospective cohort (N=11,641, ages 4-16.5). Age-specific critical points were identified at ages 10 and 13 where depression symptoms spiked for a minority of children. However, most depression risk was due to dynamic responses to environmental events, drawn not from a small pool of persistently depressed children, but a larger pool of children who varied across higher and lower symptom levels.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 402
Author(s):  
Tao Fu ◽  
Yun-Ting Tsai ◽  
Qiang Zhou

Computational fluid dynamics (CFD) was used to investigate the explosion characteristics of a Mg/air mixture in a 20 L apparatus via an Euler–Lagrange method. Various fluid properties, namely pressure field, velocity field, turbulence intensity, and the degree of particle dispersion, were obtained and analyzed. The simulation results suggested that the best delayed ignition time was 60 ms after dust dispersion, which was consistent with the optimum delayed ignition time adopted by experimental apparatus. These results indicate that the simulated Mg particles were evenly diffused in the 20 L apparatus under the effect of the turbulence. The simulations also reveal that the pressure development in the explosion system can be divided into the pressure rising stage, the maximum pressure stage, and pressure attenuation stage. The relative error of the maximum explosion pressure between the simulation and the experiments is approximately 1.04%. The explosion model provides reliable and useful information for investigating Mg explosions.


Sign in / Sign up

Export Citation Format

Share Document