equilibrium charge
Recently Published Documents


TOTAL DOCUMENTS

234
(FIVE YEARS 25)

H-INDEX

25
(FIVE YEARS 1)

2021 ◽  
Vol 119 (25) ◽  
pp. 254001
Author(s):  
Chikara Shinei ◽  
Masashi Miyakawa ◽  
Shuya Ishii ◽  
Seiichi Saiki ◽  
Shinobu Onoda ◽  
...  

2021 ◽  
Vol 56 ◽  
pp. 108-114
Author(s):  
L. V. Shekhovtsov ◽  

Studies of spectral characteristics in Schottky's contact specimens showed that photemf generated by mono­chromatic light, according to the formation mechanism, has a predominantly lateral nature, that is, in a hetero­system there are at least two areas separated by a potential barrier along the interface, with different conductivity levels. The feature of the photoemf spectral characteristics is a variations its appearance when changing the thermal annealing temperature of the studied heterosystems. A significant characteristic and a small amplitude of the characteristic indicates the formation of a transition layer, relatively homogeneous and with insignificant, compared with the volume of GaAs, the doping concentration. If the spectral characteristic has one maximum and amplitude, which several times exceeds the amplitude of a significant characteristic, which means the formation of a transition layer in the Schottky contact depletion area with high conductivity, compared with a quasine-neutral region of a semiconductor. The distribution of lateral photoemf along the sample also has a significant character. In order to obtain the correct results relative to the heterosystem transition layer, it is necessary to measure spectral acute characteristics at a distance from the point change sign of the emf that several times the diffusion length of non-equilibrium charge carriers in GaAs. The problem of the formation of a metal-semiconductor contact and other heterosystems accompanied by the occurrence of heterogeneous transition layers, always paid attention. The use of the proposed photovoltaic method allows to establish the degree of homogeneity of semiconductor layers, components of the structure and predict the redistribution of current density flowing through the physical scope of the device.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5828
Author(s):  
Zhi Zou ◽  
Longcheng Liu ◽  
Shuo Meng ◽  
Xiaolei Bian ◽  
Yongmei Li

Capacitive energy extraction based on double layer expansion (CDLE) is a renewable method of harvesting energy from the salinity difference between seawater and freshwater. It is based on the change in properties of the electric double layer (EDL) formed at the electrode surface when the concentration of the solution is changed. Many theoretical models have been developed to describe the structural and thermodynamic properties of the EDL at equilibrium, e.g., the Gouy–Chapman–Stern (GCS), Modified Poisson–Boltzmann–Stern (MPBS), modified Donnan (mD) and improved modified Donnan (i-mD) models. To evaluate the applicability of these models, especially the rationality and the physical interpretation of the parameters that were used in these models, a series of single-pass and full-cycle experiments were performed. The experimental results were compared with the numerical simulations of different EDL models. The analysis suggested that, with optimized parameters, all the EDL models we examined can well explain the equilibrium charge–voltage relation of the single-pass experiment. The GCS and MPBS models involve, however, the use of physically unreasonable parameter values. By comparison, the i-mD model is the most recommended one because of its accuracy in the results and the meaning of the parameters. Nonetheless, the i-mD model alone failed to simulate the energy production of the full-cycle CDLE experiments. Future research regarding the i-mD model is required to understand the process of the CDLE technique better.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anna Niggas ◽  
Sascha Creutzburg ◽  
Janine Schwestka ◽  
Benjamin Wöckinger ◽  
Tushar Gupta ◽  
...  

AbstractOver seventy years ago, Niels Bohr described how the charge state of an atomic ion moving through a solid changes dynamically as a result of electron capture and loss processes, eventually resulting in an equilibrium charge state. Although obvious, this process has so far eluded direct experimental observation. By peeling a solid, such as graphite, layer by layer, and studying the transmission of highly charged ions through single-, bi- and trilayer graphene, we can now observe dynamical changes in ion charge states with monolayer precision. In addition we present a first-principles approach based on the virtual photon model for interparticle energy transfer to corroborate our findings. Our model that uses a Gaussian shaped dynamic polarisability rather than a spatial delta function is a major step in providing a self-consistent description for interparticle de-excitation processes at the limit of small separations.


Atoms ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 36
Author(s):  
Noriaki Matsunami ◽  
Masao Sataka ◽  
Satoru Okayasu ◽  
Bun Tsuchiya

It has been observed that modifications of non-metallic solids such as sputtering and surface morphology are induced by electronic excitation under high-energy ion impact and that these modifications depend on the charge of incident ions (charge-state effect or incident-charge effect). A simple model is described, consisting of an approximation to the mean-charge-evolution by saturation curves and the charge-dependent electronic stopping power, for the evaluation of the relative yield (e.g., electronic sputtering yield) of the non-equilibrium charge incidence over that of the equilibrium-charge incidence. It is found that the present model reasonably explains the charge state effect on the film thickness dependence of lattice disordering of WO3. On the other hand, the model appears to be inadequate to explain the charge-state effect on the electronic sputtering of WO3 and LiF. Brief descriptions are given for the charge-state effect on the electronic sputtering of SiO2, UO2 and UF4, and surface morphology modification of poly-methyl-methacrylate (PMMA), mica and tetrahedral amorphous carbon (ta-C).


2021 ◽  
Vol 118 (25) ◽  
pp. 253102
Author(s):  
A. V. Frolov ◽  
A. P. Orlov ◽  
D. M. Voropaev ◽  
A. Hadj-Azzem ◽  
A. A. Sinchenko ◽  
...  

Author(s):  
N.S. Fialko ◽  
M.M. Olshevets ◽  
V.D. Lakhno

The paper considers the problem of the distribution of a quantum particle in a classical one-dimensional lattice with a potential well. The cases of a rigid chain, a Holstein polaron model, and a polaron in a chain with temperature are investigated by direct modeling at fixed parameters. As is known, in the one-dimensional case, a particle is captured by an arbitrarily shallow potential well with an increase of the box size. In the case of a finite chain and finite temperatures, we have quite the opposite result, when a particle, being captured in a well in a short chain, turns into delocalized state with an increase in the chain length. These results may be helpful for further understanding of charge transfer in DNA, where oxoguanine can be considered as a potential well in the case of hole transfer when for excess electron transfer it is thymine dimer.


Particuology ◽  
2021 ◽  
Author(s):  
Jiawei Hu ◽  
Cai Liang ◽  
Qun Zhou ◽  
Jiliang Ma
Keyword(s):  

2021 ◽  
pp. 138410
Author(s):  
Paulo Roberto Bueno ◽  
Vinicius W.D. Cruzeiro ◽  
Adrian E. Roitberg ◽  
Gustavo T. Feliciano

Sign in / Sign up

Export Citation Format

Share Document