select trial
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 13)

H-INDEX

11
(FIVE YEARS 2)

2020 ◽  
Author(s):  
Christine Moore ◽  
Victoria Palau ◽  
Rashid Mahboob ◽  
Janet Lightner ◽  
William Stone ◽  
...  

Abstract Background: α-tocopherol (AT) and γ-tocotrienol (GT3) are vitamin E isoforms considered to have potential chemopreventive properties. AT has been widely studied in vitro and in clinical trials with mixed results. The latest clinical study (SELECT trial) tested AT in prostate cancer patients, determined that AT provided no benefit, and could promote cancer. Conversely, GT3 has shown antineoplastic properties in several in vitro studies, with no clinical studies published to date. GT3 causes apoptosis via upregulation of the JNK pathway; however, inhibition results in a partial block of cell death. We compared side by side the mechanistic differences in these cells in response to AT and GT3.Methods: The effects of GT3 and AT were studied on androgen sensitive LNCaP and androgen independent PC-3 prostate cancer cells. Their cytotoxic effects were analyzed via MTT and confirmed by metabolic assays measuring ATP. Cellular pathways were studied by immunoblot. Quantitative analysis and the determination of relationships between cell signaling events were analyzed for both agents tested. Non-cancerous prostate RWPE-1 cells were also included as a control. Results: The RAF/RAS/ERK pathway was significantly activated by GT3 in LNCaP and PC-3 cells but not by AT. This activation is essential for the apoptotic affect by GT3 as demonstrated the complete inhibition of apoptosis by MEK1 inhibitor U0126. Phospho-c-JUN was upregulated by GT3 but not AT. No changes were observed on AKT for either agent, and no release of cytochrome c into the cytoplasm was detected. Caspases 9 and 3 were efficiently activated by GT3 on both cell lines irrespective of androgen sensitivity, but not in cells dosed with AT. Cell viability of non-cancerous RWPE-1 cells was affected neither by GT3 nor AT. Conclusions: c-JUN is a recognized master regulator of apoptosis as shown previously in prostate cancer. However, the mechanism of action of GT3 in these cells also include a significant activation of ERK which is essential for the apoptotic effect of GT3. The activation of both, ERK and c-JUN, is required for apoptosis and may suggest a relevant step in ensuring circumvention of mechanisms of resistance related to the constitutive activation of MEK1.


2020 ◽  
Author(s):  
Christine Moore ◽  
Victoria Palau ◽  
Rashid Mahboob ◽  
Janet Lightner ◽  
William Stone ◽  
...  

Abstract Background: α-tocopherol (AT) and γ-tocotrienol (GT3) are vitamin E isoforms considered to have potential chemopreventive properties. AT has been widely studied in vitro and in clinical trials with mixed results. The latest clinical study (SELECT trial) tested AT in prostate cancer patients, determined that AT provided no benefit, and could promote cancer. Conversely, GT3 has shown antineoplastic properties in several in vitro studies, with no clinical studies published to date. GT3 causes apoptosis via upregulation of the JNK pathway; however, inhibition results in a partial block of cell death. We compared side by side the mechanistic differences in these cells in response to AT and GT3. Methods: The effects of GT3 and AT were studied on androgen sensitive LNCaP and androgen independent PC-3 prostate cancer cells. Their cytotoxic effects were analyzed via MTT and confirmed by metabolic assays. Cellular pathways were studied by immunoblot. Quantitative analysis and the determination of relationships between cell signaling events were analyzed for both agents tested. Non-cancerous prostate RWPE-1 cells were also included as a control. Results: The RAF/RAS/ERK pathway was significantly activated by GT3 in LNCaP and PC-3 cells but not by AT. This activation is essential for the apoptotic affect by GT3 as demonstrated the complete inhibition of apoptosis by MEK1 inhibitor U0126. Phospho-c-Jun was upregulated by GT3 but not AT. No changes were observed on AKT for either agent, and no release of cytochrome c into the cytoplasm was detected. Caspases 9 and 3 were efficiently activated by GT3 on both cell lines irrespective of androgen sensitivity, but not in cells dosed with AT. Cell viability of non-cancerous RWPE-1 cells was affected neither by GT3 nor AT. Conclusions: c-JUN is a recognized master regulator of apoptosis as shown previously in prostate cancer. However, the mechanism of action of GT3 in these cells also include a significant activation of ERK which is essential for the apoptotic effect of GT3. The activation of both, ERK and c-JUN, is required for apoptosis and may suggest a relevant step in ensuring circumvention of mechanisms of resistance related to the constitutive activation of MEK1.


2020 ◽  
Vol 182 (2) ◽  
pp. 131-138 ◽  
Author(s):  
M D Aydemirli ◽  
E Kapiteijn ◽  
K R M Ferrier ◽  
P B Ottevanger ◽  
T P Links ◽  
...  

Objective The SELECT trial showed progression-free survival (PFS) benefit for lenvatinib for advanced radioiodine-refractory differentiated thyroid cancer (RAI-refractory or RR-DTC) patients, on which current clinical practice is based. We assessed whether the effectiveness and toxicity of lenvatinib in real-life clinical practice in the Netherlands were comparable to the pivotal SELECT trial. Methods From three Dutch centres Electronic Health Records (EHRs) of patients treated in the lenvatinib compassionate use program or as standard of care were reviewed and checked for SELECT eligibility criteria. Baseline characteristics, safety, and efficacy measures were compared and PFS and overall survival (OS) were calculated. Furthermore, PFS was compared to estimates of PFS reported in other studies. Results A total of 39 DTC patients with a median age of 62 years were analysed. Of these, 27 patients (69%) did not fulfil the SELECT eligibility criteria. The most common grade ≥3 toxicities were hypertension (n = 11, 28%), diarrhoea (n = 7, 18%), vomiting (n = 4, 10%), and gallbladder disease (n = 3, 8%). Median PFS and median OS were 9.7 (95% confidence interval (CI): 4.0–15.5) and 18.3 (95% CI: 4.9–31.7) months, respectively, response rate was 38% (95% CI: 23–54%). PFS in the Dutch real-life situation was comparable to previous real-life studies, but inferior to PFS as shown in the SELECT trial (P = 0.04). Conclusions PFS in our non-trial population was significantly shorter than in the SELECT trial population. In the interpretation of results, differences in the real-life population and the SELECT study population regarding patient characteristics should be taken into account.


2019 ◽  
Vol 23 (2) ◽  
pp. 333-342
Author(s):  
Mahbubl Ahmed ◽  
◽  
Chee Goh ◽  
Edward Saunders ◽  
Clara Cieza-Borrella ◽  
...  

Abstract Background The development of prostate cancer can be influenced by genetic and environmental factors. Numerous germline SNPs influence prostate cancer susceptibility. The functional pathways in which these SNPs increase prostate cancer susceptibility are unknown. Finasteride is currently not being used routinely as a chemoprevention agent but the long term outcomes of the PCPT trial are awaited. The outcomes of the SELECT trial have not recommended the use of chemoprevention in preventing prostate cancer. This study investigated whether germline risk SNPs could be used to predict outcomes in the PCPT and SELECT trial. Methods Genotyping was performed in European men entered into the PCPT trial (n = 2434) and SELECT (n = 4885). Next generation genotyping was performed using Affymetrix® Eureka™ Genotyping protocols. Logistic regression models were used to test the association of risk scores and the outcomes in the PCPT and SELECT trials. Results Of the 100 SNPs, 98 designed successfully and genotyping was validated for samples genotyped on other platforms. A number of SNPs predicted for aggressive disease in both trials. Men with a higher polygenic score are more likely to develop prostate cancer in both trials, but the score did not predict for other outcomes in the trial. Conclusion Men with a higher polygenic risk score are more likely to develop prostate cancer. There were no interactions of these germline risk SNPs and the chemoprevention agents in the SELECT and PCPT trials.


2019 ◽  
Author(s):  
Christine Moore ◽  
Victoria Palau ◽  
Rashid Mahboob ◽  
Janet Lightner ◽  
William Stone ◽  
...  

Abstract Background: α-tocopherol (AT) and γ-tocotrienol (GT3) are vitamin E isoforms considered to have potential chemopreventive properties. AT has been widely studied in vitro and in clinical trials with mixed results. The latest clinical study (SELECT trial) tested AT in prostate cancer patients, determined that AT provided no benefit, and could promote cancer. Conversely, GT3 has shown antineoplastic properties in several in vitro studies, with no clinical studies published to date. GT3 causes apoptosis via upregulation of the JNK pathway; however, inhibition results in a partial block of cell death. We compared side by side the mechanistic differences in these cells in response to AT and GT3. Methods: The effects of GT3 and AT were studied on androgen sensitive LNCaP and androgen independent PC-3 prostate cancer cells. Their cytotoxic effects were analyzed via MTT and confirmed by metabolic assays. Cellular pathways were studied by immunoblot. Quantitative analysis and the determination of relationships between cell signaling events were analyzed for both agents tested. Non-cancerous prostate RWPE-1 cells were also included as a control. Results: The RAF/RAS/ERK pathway was significantly activated by GT3 in LNCaP and PC-3 cells but not by AT. This activation is essential for the apoptotic affect by GT3 as demonstrated the complete inhibition of apoptosis by MEK1 inhibitor U0126. Phospho-c-Jun was upregulated by GT3 but not AT. No changes were observed on AKT for either agent, and no release of cytochrome c into the cytoplasm was detected. Caspases 9 and 3 were efficiently activated by GT3 on both cell lines irrespective of androgen sensitivity, but not in cells dosed with AT. Cell viability of non-cancerous RWPE-1 cells was affected neither by GT3 nor AT. Conclusions: c-JUN is a recognized master regulator of apoptosis as shown previously in prostate cancer. However, the mechanism of action of GT3 in these cells also include a significant activation of ERK which is essential for the apoptotic effect of GT3. The activation of both, ERK and c-JUN, is required for apoptosis and may suggest a relevant step in ensuring circumvention of mechanisms of resistance related to the constitutive activation of MEK1.


Sign in / Sign up

Export Citation Format

Share Document