Lower Ionosphere of the Arctic in June 2015 during a Strong Magnetic Storm and Solar X-Ray Flares According to Eclipsing Radiosonde Data on GPS–Formosat Intersatellite Paths

2021 ◽  
Vol 59 (2) ◽  
pp. 96-103
Author(s):  
S. S. Matyugov ◽  
O. I. Yakovlev ◽  
A. A. Pavel’ev
2017 ◽  
Vol 60 (5) ◽  
pp. 355-373 ◽  
Author(s):  
V. P. Uryadov ◽  
A. A. Kolchev ◽  
G. G. Vertogradov ◽  
F. I. Vybornov ◽  
I. A. Egoshin ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Elena Basso ◽  
Federica Pozzi ◽  
Jessica Keister ◽  
Elizabeth Cronin

AbstractIn the late 19th and early 20th centuries, original photographs were sent to publishers so that they could be reproduced in print. The photographs often needed to be reworked with overpainting and masking, and such modifications were especially necessary for low-contrast photographs to be reproduced as a letterpress halftone. As altered objects, many of these marked-up photographs were simply discarded after use. An album at The New York Public Library, however, contains 157 such photographs, all relating to the Jackson–Harmsworth expedition to Franz Josef Land, from 1894 to 1897. Received as gifts from publishers, the photographs are heavily retouched with overpainting and masking, as well as drawn and collaged elements. The intense level of overpainting on many of the photographs, but not on others, raised questions about their production and alteration. Jackson’s accounts attested to his practice of developing and printing photographs on site, testing different materials and techniques—including platino-bromide and silver-gelatin papers—to overcome the harsh environmental conditions. In this context, sixteen photographs from the album were analyzed through a combination of non-invasive and micro-invasive techniques, including X-ray fluorescence (XRF) spectroscopy, fiber optics reflectance spectroscopy (FORS), Raman and Fourier-transform infrared (FTIR) spectroscopies, and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDS). This analytical campaign aimed to evaluate the possible residual presence of silver halides in any of the preliminary and improved photographs. The detection of these compounds would be one of several factors supporting a hypothesis that some of the photographs in the album were indeed printed on site, in the Arctic, and, as a result, may have been impacted by the extreme environment. Additional goals of the study included the evaluation of the extent of retouching, providing a full characterization of the pigments and dyes used in overpainted prints, and comparing the results with contemporaneous photographic publications that indicate which coloring materials were available at the time. Further analyses shed light on the organic components present in the binders and photographic emulsions. This research has increased our knowledge of photographic processes undertaken in a hostile environment such as the Arctic, and shed light on the technical aspects of photographically illustrating books during the late 19th and early 20th centuries.


2007 ◽  
Vol 47 (6) ◽  
pp. 696-703 ◽  
Author(s):  
L. V. Tverskaya ◽  
E. A. Ginzburg ◽  
T. A. Ivanova ◽  
N. N. Pavlov ◽  
P. M. Svidsky

2016 ◽  
Vol 56 (3) ◽  
pp. 281-292 ◽  
Author(s):  
L. I. Gromova ◽  
N. G. Kleimenova ◽  
A. E. Levitin ◽  
S. V. Gromov ◽  
L. A. Dremukhina ◽  
...  

2019 ◽  
Vol 11 (13) ◽  
pp. 1616 ◽  
Author(s):  
Zhilu Wu ◽  
Jungang Wang ◽  
Yanxiong Liu ◽  
Xiufeng He ◽  
Yang Liu ◽  
...  

Haiyang-2A (HY-2A) has been working in-flight for over seven years, and the accuracy of HY-2A calibration microwave radiometer (CMR) data is extremely important for the wet troposphere delay correction (WTC) in sea surface height (SSH) determination. We present a comprehensive evaluation of the HY-2A CMR observation using the numerical weather model (NWM) for all the data available period from October 2011 to February 2018, including the WTC and the precipitable water vapor (PWV). The ERA(ECMWF Re-Analysis)-Interim products from European Centre for Medium-Range Weather Forecasts (ECMWF) are used for the validation of HY-2A WTC and PWV products. In general, a global agreement of root-mean-square (RMS) of 2.3 cm in WTC and 3.6 mm in PWV are demonstrated between HY-2A observation and ERA-Interim products. Systematic biases are revealed where before 2014 there was a positive WTC/PWV bias and after that, a negative one. Spatially, HY-2A CMR products show a larger bias in polar regions compared with mid-latitude regions and tropical regions and agree better in the Antarctic than in the Arctic with NWM. Moreover, HY-2A CMR products have larger biases in the coastal area, which are all caused by the brightness temperature (TB) contamination from land or sea ice. Temporally, the WTC/PWV biases increase from October 2011 to March 2014 with a systematic bias over 1 cm in WTC and 2 mm in PWV, and the maximum RMS values of 4.62 cm in WTC and 7.61 mm in PWV occur in August 2013, which is because of the unsuitable retrieval coefficients and systematic TB measurements biases from 37 GHz band. After April 2014, the TB bias is corrected, HY-2A CMR products agree very well with NWM from April 2014 to May 2017 with the average RMS of 1.68 cm in WTC and 2.65 mm in PWV. However, since June 2017, TB measurements from the 18.7 GHz band become unstable, which led to the huge differences between HY-2A CMR products and the NWM with an average RMS of 2.62 cm in WTC and 4.33 mm in PWV. HY-2A CMR shows high accuracy when three bands work normally and further calibration for HY-2A CMR is in urgent need. Furtherly, 137 global coastal radiosonde stations were used to validate HY-2A CMR. The validation based on radiosonde data shows the same variation trend in time of HY-2A CMR compared to the results from ECMWF, which verifies the results from ECMWF.


2008 ◽  
Vol 26 (7) ◽  
pp. 1731-1740 ◽  
Author(s):  
D. P. Grubor ◽  
D. M. Šulić ◽  
V. Žigman

Abstract. The classification of X-ray solar flares is performed regarding their effects on the Very Low Frequency (VLF) wave propagation along the Earth-ionosphere waveguide. The changes in propagation are detected from an observed VLF signal phase and amplitude perturbations, taking place during X-ray solar flares. All flare effects chosen for the analysis are recorded by the Absolute Phase and Amplitude Logger (AbsPal), during the summer months of 2004–2007, on the single trace, Skelton (54.72 N, 2.88 W) to Belgrade (44.85 N, 20.38 E) with a distance along the Great Circle Path (GCP) D≈2000 km in length. The observed VLF amplitude and phase perturbations are simulated by the computer program Long-Wavelength Propagation Capability (LWPC), using Wait's model of the lower ionosphere, as determined by two parameters: the sharpness (β in 1/km) and reflection height (H' in km). By varying the values of β and H' so as to match the observed amplitude and phase perturbations, the variation of the D-region electron density height profile Ne(z) was reconstructed, throughout flare duration. The procedure is illustrated as applied to a series of flares, from class C to M5 (5×10−5 W/m2 at 0.1–0.8 nm), each giving rise to a different time development of signal perturbation. The corresponding change in electron density from the unperturbed value at the unperturbed reflection height, i.e. Ne(74 km)=2.16×108 m−3 to the value induced by an M5 class flare, up to Ne(74 km)=4×1010 m−3 is obtained. The β parameter is found to range from 0.30–0.49 1/km and the reflection height H' to vary from 74–63 km. The changes in Ne(z) during the flares, within height range z=60 to 90 km are determined, as well.


Solar Physics ◽  
1969 ◽  
Vol 9 (2) ◽  
pp. 478-486 ◽  
Author(s):  
Pierre Kaufmann ◽  
M. H. Paes de Barros

2020 ◽  
Author(s):  
Michael Blaschek ◽  
Federico Ambrogi ◽  
Leopold Haimberger

<p>Radiosonde measurements are potentially valuable indicators of upper air climate change because of their unique long-term availability and their high vertical extent and resolution. The radiosonde network, however, is not a long-term stable measurement system, since it was designed for operational use. Changes in the observation system are frequent and surf the purpose of competitive daily weather prediction, but result in more or less clear breakpoints in the observed long-term time series. These artificial biases need to be removed. We apply a bias adjustment scheme for radiosonde temperatures and humidity based on departures from a recent reanalysis, ERA5 potentially back to 1950. Newly digitized and recovered radiosonde data have been used within ERA5 for the first time. We present long-term bias adjustments and trends as preliminary results. In particular, we focus on the water vapour transport into the Arctic as a result of polar amplification and meridional heat exchange.</p>


Sign in / Sign up

Export Citation Format

Share Document