driver inattention
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 14)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 11 (24) ◽  
pp. 11587
Author(s):  
Luca Ulrich ◽  
Francesca Nonis ◽  
Enrico Vezzetti ◽  
Sandro Moos ◽  
Giandomenico Caruso ◽  
...  

Driver inattention is the primary cause of vehicle accidents; hence, manufacturers have introduced systems to support the driver and improve safety; nonetheless, advanced driver assistance systems (ADAS) must be properly designed not to become a potential source of distraction for the driver due to the provided feedback. In the present study, an experiment involving auditory and haptic ADAS has been conducted involving 11 participants, whose attention has been monitored during their driving experience. An RGB-D camera has been used to acquire the drivers’ face data. Subsequently, these images have been analyzed using a deep learning-based approach, i.e., a convolutional neural network (CNN) specifically trained to perform facial expression recognition (FER). Analyses to assess possible relationships between these results and both ADAS activations and event occurrences, i.e., accidents, have been carried out. A correlation between attention and accidents emerged, whilst facial expressions and ADAS activations resulted to be not correlated, thus no evidence that the designed ADAS are a possible source of distraction has been found. In addition to the experimental results, the proposed approach has proved to be an effective tool to monitor the driver through the usage of non-invasive techniques.


Author(s):  
Curtis M. Craig ◽  
Nichole L. Morris ◽  
Jacob D. Achtemeier ◽  
Katelyn R. Schwieters

Bicycling has become an increasingly popular and environmentally friendly active transportation modality for many commuters across the nation. Consequently, as ridership increases so does the rate of bicycle–motor vehicle crashes, many of which are caused by reduced bicycle visibility and driver inattention. Therefore, one effective solution to improve bicyclist safety may be through the use of an audible bicycle alarm system to alert both the driver and the rider. A study was conducted to determine whether a unique auditory alert would be effective at reducing crash rates and whether a localized alert (i.e., an alert presented from the driver’s perspective) would improve the driver’s responsiveness in avoiding a potential collision. A driving simulator study tested car horn sounds, an experimental bike alert, and no auditory alert in different potential collision scenarios to measure collision rates and other collision avoidance metrics. Findings indicated that the experimental bike alert contributed to fewer relative crashes than the horn sound and no sound on bicycles, motor vehicles were struck more frequently than bicycles, collisions were more likely to occur from the front than the sides, and collisions were more likely for drivers going straight than when making turns. Taken together, the findings suggest that an alarm designed to be specifically compatible with bicycles is more effective than auditory alerts from other sources.


2021 ◽  
Vol 47 (1) ◽  
pp. 88-100.e3 ◽  
Author(s):  
Catherine C. McDonald ◽  
Jamison D. Fargo ◽  
Jennifer Swope ◽  
Kristina B. Metzger ◽  
Marilyn S. Sommers

Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3836
Author(s):  
António Lobo ◽  
Sara Ferreira ◽  
António Couto

Driver inattention is a major contributor to road crashes. The emerging of new driver monitoring systems represents an opportunity for researchers to explore new data sources to understand driver inattention, even if the technology was not developed with this purpose in mind. This study is based on retrospective data obtained from two driver monitoring systems to study distraction and drowsiness risk factors. The data includes information about the trips performed by 330 drivers and corresponding distraction and drowsiness alerts emitted by the systems. The drivers’ historical travel data allowed defining two groups with different mobility patterns (short-distance and long-distance drivers) through a cluster analysis. Then, the impacts of the driver’s profile and trip characteristics (e.g., driving time, average speed, and breaking time and frequency) on inattention were analyzed using ordered probit models. The results show that long-distance drivers, typically associated with professionals, are less prone to distraction and drowsiness than short-distance drivers. The driving time increases the probability of inattention, while the breaking frequency is more important to mitigate inattention than the breaking time. Higher average speeds increase the inattention risk, being associated with road facilities featuring a monotonous driving environment.


Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 288 ◽  
Author(s):  
Minjin Baek ◽  
Donggi Jeong ◽  
Dongho Choi ◽  
Sangsun Lee

Driver inattention is one of the leading causes of traffic crashes worldwide. Providing the driver with an early warning prior to a potential collision can significantly reduce the fatalities and level of injuries associated with vehicle collisions. In order to monitor the vehicle surroundings and predict collisions, on-board sensors such as radar, lidar, and cameras are often used. However, the driving environment perception based on these sensors can be adversely affected by a number of factors such as weather and solar irradiance. In addition, potential dangers cannot be detected if the target is located outside the limited field-of-view of the sensors, or if the line of sight to the target is occluded. In this paper, we propose an approach for designing a vehicle collision warning system based on fusion of multisensors and wireless vehicular communications. A high-level fusion of radar, lidar, camera, and wireless vehicular communication data was performed to predict the trajectories of remote targets and generate an appropriate warning to the driver prior to a possible collision. We implemented and evaluated the proposed vehicle collision system in virtual driving environments, which consisted of a vehicle–vehicle collision scenario and a vehicle–pedestrian collision scenario.


Sign in / Sign up

Export Citation Format

Share Document