customized production
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 19)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
pp. 96
Author(s):  
Miriam Pekarcikova ◽  
Peter Trebuna ◽  
Marek Kliment ◽  
Stefan Kral

The importance of 3D printing is primarily that it enables customized production and, through Industry 4.0 technology, enables decentralized production. The article deals with the issue of 3D modelling and 3D printing of plastic respirators in the laboratory conditions of the authors’ workplace. In the above case study, the process of creating 3D models of individual parts of a plastic respirator and the production of a given model using a 3D printer is processed. The article also outlines the trends in 3D printing in connection with Blockchain and their importance on the Supply Chain.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 70
Author(s):  
Min-Seok Yang ◽  
Ji-Heon Kang ◽  
Ji-Wook Kim ◽  
Kun-Woo Kim ◽  
Da-Hye Kim ◽  
...  

In metal product manufacturing, additive manufacturing (AM) is a method that has the advantage of fabricating complex shapes and customized production, unlike existing machining methods. However, owing to the characteristics of the AM process, anisotropy of macrostructure occurs because of various causes such as the scan direction, melting, fusion, and cooling of the powdered material. The macrostructure anisotropy is realized from the scan direction, and when a single layer is stacked in one direction, it is expressed as orthogonal anisotropy. Here, the classical lamination theory is applied to simply calculate the individual orthotropic layers by superimposing them. Through this, the authors analyzed whether the mechanical properties of the product are isotropically expressed with a periodic layer rotation strategy. To determine if the mechanical properties can be reasonably considered to be isotropic, a shock absorber mount for a vehicle was manufactured by AM. The tensile and vibration test performed on the product was compared with the finite element analysis and experimental results. As a result of the comparison, it was confirmed that the macroscopically of the product was considered isotropic as the load-displacement diagram and the fracture location coincided, as well as the natural frequency and mode shape.


2021 ◽  
Author(s):  
Murtadha Al-Habib ◽  
Yasser Al-Ghamdi

Abstract Extensive computing resources are required to leverage todays advanced geoscience workflows that are used to explore and characterize giant petroleum resources. In these cases, high-performance workstations are often unable to adequately handle the scale of computing required. The workflows typically utilize complex and massive data sets, which require advanced computing resources to store, process, manage, and visualize various forms of the data throughout the various lifecycles. This work describes a large-scale geoscience end-to-end interpretation platform customized to run on a cluster-based remote visualization environment. A team of computing infrastructure and geoscience workflow experts was established to collaborate on the deployment, which was broken down into separate phases. Initially, an evaluation and analysis phase was conducted to analyze computing requirements and assess potential solutions. A testing environment was then designed, implemented and benchmarked. The third phase used the test environment to determine the scale of infrastructure required for the production environment. Finally, the full-scale customized production environment was deployed for end users. During testing phase, aspects such as connectivity, stability, interactivity, functionality, and performance were investigated using the largest available geoscience datasets. Multiple computing configurations were benchmarked until optimal performance was achieved, under applicable corporate information security guidelines. It was observed that the customized production environment was able to execute workflows that were unable to run on local user workstations. For example, while conducting connectivity, stability and interactivity benchmarking, the test environment was operated for extended periods to ensure stability for workflows that require multiple days to run. To estimate the scale of the required production environment, varying categories of users’ portfolio were determined based on data type, scale and workflow. Continuous monitoring of system resources and utilization enabled continuous improvements to the final solution. The utilization of a fit-for-purpose, customized remote visualization solution may reduce or ultimately eliminate the need to deploy high-end workstations to all end users. Rather, a shared, scalable and reliable cluster-based solution can serve a much larger user community in a highly performant manner.


2021 ◽  
pp. 620-627
Author(s):  
Simon Dürr ◽  
Rainer Silbernagel ◽  
Hannah Bartsch ◽  
Gwen Louis Steier ◽  
Marco F. Huber ◽  
...  

2021 ◽  
Vol 13 (14) ◽  
pp. 7684
Author(s):  
Raja Awais Liaqait ◽  
Shermeen Hamid ◽  
Salman Sagheer Warsi ◽  
Azfar Khalid

Scheduling plays a pivotal role in the competitiveness of a job shop facility. The traditional job shop scheduling problem (JSSP) is centralized or semi-distributed. With the advent of Industry 4.0, there has been a paradigm shift in the manufacturing industry from traditional scheduling to smart distributed scheduling (SDS). The implementation of Industry 4.0 results in increased flexibility, high product quality, short lead times, and customized production. Smart/intelligent manufacturing is an integral part of Industry 4.0. The intelligent manufacturing approach converts renewable and nonrenewable resources into intelligent objects capable of sensing, working, and acting in a smart environment to achieve effective scheduling. This paper aims to provide a comprehensive review of centralized and decentralized/distributed JSSP techniques in the context of the Industry 4.0 environment. Firstly, centralized JSSP models and problem-solving methods along with their advantages and limitations are discussed. Secondly, an overview of associated techniques used in the Industry 4.0 environment is presented. The third phase of this paper discusses the transition from traditional job shop scheduling to decentralized JSSP with the aid of the latest research trends in this domain. Finally, this paper highlights futuristic approaches in the JSSP research and application in light of the robustness of JSSP and the current pandemic situation.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chengjun Chen ◽  
Zhongke Tian ◽  
Dongnian Li ◽  
Lieyong Pang ◽  
Tiannuo Wang ◽  
...  

Purpose This study aims to monitor and guide the assembly process. The operators need to change the assembly process according to the products’ specifications during manual assembly of mass customized production. Traditional information inquiry and display methods, such as manual lookup of assembly drawings or electronic manuals, are inefficient and error-prone. Design/methodology/approach This paper proposes a projection-based augmented reality system (PBARS) for assembly guidance and monitoring. The system includes a projection method based on viewpoint tracking, in which the position of the operator’s head is tracked and the projection images are changed correspondingly. The assembly monitoring phase applies a method for parts recognition. First, the pixel local binary pattern (PX-LBP) operator is achieved by merging the classical LBP operator with the pixel classification process. Afterward, the PX-LBP features of the depth images are extracted and the randomized decision forests classifier is used to get the pixel classification prediction image (PCPI). Parts recognition and assembly monitoring is performed by PCPI analysis. Findings The projection image changes with the viewpoint of the human body, hence the operators always perceive the three-dimensional guiding scene from different viewpoints, improving the human-computer interaction. Part recognition and assembly monitoring were achieved by comparing the PCPIs, in which missing and erroneous assembly can be detected online. Originality/value This paper designed the PBARS to monitor and guide the assembly process simultaneously, with potential applications in mass customized production. The parts recognition and assembly monitoring based on pixels classification provides a novel method for assembly monitoring.


Sign in / Sign up

Export Citation Format

Share Document