Assessment of the temperature distribution in deep rolling of hardened AISI 4140 steel

2022 ◽  
Vol 73 ◽  
pp. 686-694
Author(s):  
Augusto M. Martins ◽  
Carlos A.A. Leal ◽  
Augusto F.V. Campidelli ◽  
Alexandre M. Abrão ◽  
Paulo C.M. Rodrigues ◽  
...  
2020 ◽  
Vol 29 (7) ◽  
pp. 4351-4359
Author(s):  
Poliana S. Souza ◽  
Vinicius M. Cangussu ◽  
Marcelo A. Câmara ◽  
Alexandre M. Abrão ◽  
Berend Denkena ◽  
...  

2018 ◽  
Vol 60 (2) ◽  
pp. 149-155 ◽  
Author(s):  
Turhan Kursun ◽  
Tanju Teker

2013 ◽  
Vol 20 (03n04) ◽  
pp. 1350033 ◽  
Author(s):  
ŞERAFETTIN EKINCI ◽  
AHMET AKDEMIR ◽  
HUMAR KAHRAMANLI

Nitriding is usually used to improve the surface properties of steel materials. In this way, the wear resistance of steels is improved. We conducted a series of studies in order to investigate the microstructural, mechanical and tribological properties of salt bath nitrided AISI 4140 steel. The present study has two parts. For the first phase, the tribological behavior of the AISI 4140 steel which was nitrided in sulfinuz salt bath (SBN) was compared to the behavior of the same steel which was untreated. After surface characterization using metallography, microhardness and sliding wear tests were performed on a block-on-cylinder machine in which carbonized AISI 52100 steel discs were used as the counter face. For the examined AISI 4140 steel samples with and without surface treatment, the evolution of both the friction coefficient and of the wear behavior were determined under various loads, at different sliding velocities and a total sliding distance of 1000 m. The test results showed that wear resistance increased with the nitriding process, friction coefficient decreased due to the sulfur in salt bath and friction coefficient depended systematically on surface hardness. For the second part of this study, four artificial neural network (ANN) models were designed to predict the weight loss and friction coefficient of the nitrided and unnitrided AISI 4140 steel. Load, velocity and sliding distance were used as input. Back-propagation algorithm was chosen for training the ANN. Statistical measurements of R2, MAE and RMSE were employed to evaluate the success of the systems. The results showed that all the systems produced successful results.


2019 ◽  
Vol 466 ◽  
pp. 989-999 ◽  
Author(s):  
Xing Chen ◽  
Xiangyun Bao ◽  
Yang Xiao ◽  
Chengsong Zhang ◽  
Lina Tang ◽  
...  

Author(s):  
Santosh Vitthal Bhaskar ◽  
Hari Narayan Kudal

In the present article, samples made of AISI 4140 steel, pre-treated with plasma nitriding (PN), and coated with different coatings like Titanium Carbonitride (TiCN), Aluminium Chromium Nitride (AlCrN), using Physical Vapor Deposition (PVD) technique, were investigated in terms of their microhardness, surface roughness, and dry sliding wear behaviour. Wear tests were performed with a pin-on-disc machine. Coatings were deposited on plasma nitrided samples. The wear behaviour, and wear mechanisms of TiCN- and AlCrN-coated, PN treated AISI 4140 specimens were investigated using a field emission Scanning Electron Microscope (SEM), equipped with an Energy Dispersive X-ray (EDX) analyzer. An SEM was used to study the surface morphology of the worn surfaces. Also, adhesion tests were conducted to investigate the adhesion quality of the coated specimens. The results of the investigation showed improved wear properties. Furthermore, the compound layer formed during nitriding was found to act as an intermediate hard layer, leading to superior sliding wear properties.


Sign in / Sign up

Export Citation Format

Share Document