scholarly journals Conversion of Palm Oil (CPO) into Fuel Biogasoline through Thermal Cracking Using a Catalyst Based Na-Bentonite and Limestone of Soil Limestone NTT

Author(s):  
Daniel Silalahi ◽  
Minto Supeno ◽  
Muhammad Taufik

Cracking catalytic palm oil (CPO) into hydrocarbon fuel by saponification pretreatment has been carried out with bentonite and limestone-based catalysts. The catalysts used were Na-bentonite and Limestone NTT which were first analyzed using XRF, XRD, and SEM. Saponification pretreatment was carried out on CPO to facilitate the cracking process using a catalyst. The saponification product in the form of a mixture of soap and glycerol was then analyzed by DSC to determine the degradation temperature. Catalytic cracking is carried out in two stages, namely, the first stage hydrocracking at a temperature of 250-350°C using a stainless steel reactor is the source of catalyst Fe / Cr. The resulting distillate was then cracked again using a Na-bentonite catalyst and a TKNTT catalyst. The resulting fuel is a hydrocarbon fuel which is confirmed from the FT-IR results which indicate the presence of long-chain hydrocarbon compounds. This data is also supported by the results of the GC-MS analysis which shows that the fuel fraction produced is mostly biogasoline. Where cracking using a Na-bentonite catalyst produces a biogasoline fraction of 61.36% and a biodiesel fraction of 38.63%, THAT produces a biogasoline fraction of 88.88% and a biodiesel fraction of 11.11%. The characteristics of the hydrocarbon fuels that have been analyzed show that the calorific value of combustion is 6101 cal/g which is determined using a bomb calorimeter, and the cetane index is 62 which is analyzed using CCI. Both types of hydrocarbon fuels have met the physical requirements that must be possessed by biogasoline fuel based on SNI standards.

2011 ◽  
Vol 322 ◽  
pp. 201-204
Author(s):  
Li Yun Zheng ◽  
Zhi Wei Yang

Negative thermal expansion material ZrW2O8 was synthesized by hydrothermal method. The prepared ZrW2O8 and the precursor were characterized by x-ray diffractometer, thermo-gravimetric/differential thermal analyzer, FT-IR spectrometer and scanning electron microscope. The results show that a single-phase ZrW2O8 can be synthesized when HCl concentration is as low as 4mol/L. ZrW2O8 was obtained through the precursor dehydration and debonding O-H bond. The dehydration reaction includes two stages. There is a sharp endothermic peak in the first stage of the dehydration reaction and the second stage is a slow endothermic process. A new phase appeared when the sintering temperature is above 600 °C. ZrW2O8 and the precursor have the same rod-like shape and grow up along a specific direction. The synthesized ZrW2O8 particles obtained from 4mol/L HCl appeared large size. It became much finer and the rod with multiple crystal face was easy to form when the concentration of HCl increased to 6~8 mol/L.


2013 ◽  
Vol 844 ◽  
pp. 239-242 ◽  
Author(s):  
Supaporn Ieadsang ◽  
Anoma Thitithammawong ◽  
Charoen Nakason ◽  
Azizon Kaesaman

Modified epoxidized palm oil (pA-m-EPO) was prepared by a reaction of epoxidized palm oil (EPO) with n-phenyl-p-phenylenediamine. Chemical structure of the pA-m-EPO was characterized by using FT-IR spectrophotometer. Influence of the pA-m-EPO on bound rubber content, total mixing energy, Mooney viscosity and curing characteristics of carbon black filled natural rubber compound together with mechanical and morphological properties of carbon black filled natural rubber vulcanizates was later studied. Results showed that the NR compound and vulcanizate with using the pA-m-EPO gave inferior properties than those of using the aromatic oil. However, they provided better properties than those of the treated distillate aromatic extract (TDAE) excepting filler dispersion. Furthermore, the pA-m-EPO can be claimed as non-carcinogenic processing oil with low polycyclic aromatic hydrocarbons.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Reza Hodjati ◽  
Hossein Aslani ◽  
Iman Faridmehr ◽  
A. S. M. Abdul Awal ◽  
Ziba Kazemi

Prepacked aggregate concrete (PAC) is a type of concrete that is placed in two stages where the coarse aggregates are first placed inside the formworks and then the grout is pumped from underneath through a manual pump. Grout properties including density, grout consistency, bleeding, and compressive strength are of great importance in PAC. Such properties could be improved by application of pozzolanic materials like palm oil fuel ash. This paper is aimed at finding the most optimum percentage of POFA replacement by weight of cement. It was concluded that 30% POFA replacement yielded the most optimum results.


2007 ◽  
Vol 15 (6) ◽  
pp. 463-468 ◽  
Author(s):  
J.T. Sun ◽  
Y..D. Huang

Methacryloxypropyltrimethoxysilane (MPTS) was used as the modified monomer to synthesise polymethylphenylsiloxane containing methacryloyl groups (PMPS-M) through co-hydrolysis and polycondensation with other silane monomers. The effects of MPTS on the synthesis and on the thermal and adhesive properties of PMPS-M were investigated by using Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), differential thermogravimetry (DTG), scanning electron microscopy (SEM), and measurements of adhesion using a shear test. The results indicated that PMPS-M with good storage stability was synthesised successfully when the amount of MPTS was less than 8 wt%. PMPS-M had higher thermal stability than PMPS. The onset degradation temperature for PMPS-M containing 8 wt% MPTS was 518 °C, while it was 463 °C for PMPS. The improvement in thermal stability may be due to the protective effect of the methacryloyl groups, as observed under SEM. The shear strength of PMPS-M was 4.2 MPa when containing about 8 wt% MPTS, about 50% higher than that of PMPS. The shear strength of PMPS-M was also higher than that of PMPS at high temperatures.


2018 ◽  
Vol 9 (3-4) ◽  
pp. 103-110
Author(s):  
Satriananda ◽  
Medyan Riza ◽  
Sri Mulyati ◽  
Farid Mulana

Synthesis of palm oil-based polyurethane (PU) and the formation of nanocomposite from a mixture of PU with clay filler has been performed. Polyol which is the basic material of PU is formed by epoxidation and hydroxylation process and then mixed with isocyanate. Clay used as filler in this study was obtained from the local area of North Aceh, which is a type of swelling of clay that has been modified with cetyltrimethyl ammonium bromide surfactant. Nanocomposites are formed from PU with clay fill variations of 3%, 5%, and 8% by weight of the total mixture of 40 g. The resulting material is tested in character by some type of characterization. Based on the test results with Fourier transform infrared spectroscopy, the hydroxyl polyol group was obtained in groups of 3390.870 (O–H) and –NH as the PU microdomain structure was obtained at a wavelength of 2987 cm−1. Morphological test results using scanning electron microscopy revealed that the addition of modified clay increases the adhesion in the paint and PU coatings and also increases the gloss from the surface and homogeneous material. The thermal endurance test with thermogravimetric analysis reported that the addition of clay fillers in PU showed enhanced effects for better thermal stability in nanocomposite materials when compared with neat polymers. Samples of PU/clay nanocomposites with the addition of 8 wt% clay filler were the most optimum composites among other variations with the thermal degradation temperature value of 296°C. This research generates prospects for applying various industrial surface coatings that are resistant to corrosion and heat, have good mechanical properties, and are more environmentally friendly.


2020 ◽  
Vol 59 (20) ◽  
pp. 9459-9468 ◽  
Author(s):  
I. Istadi ◽  
Teguh Riyanto ◽  
Luqman Buchori ◽  
Didi Dwi Anggoro ◽  
G. Gilbert ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 274 ◽  
Author(s):  
Andreea Madalina Pandele ◽  
Andreea Constantinescu ◽  
Ionut Cristian Radu ◽  
Florin Miculescu ◽  
Stefan Ioan Voicu ◽  
...  

This article presents a facile synthesis method used to obtain new composite films based on polylactic acid and micro-structured hydroxyapatite particles. The composite films were synthesized starting from a polymeric solution in chloroform (12 wt.%) in which various concentrations of hydroxyapatite (1, 2, and 4 wt.% related to polymer) were homogenously dispersed using ultrasonication followed by solvent evaporation. The synthesized composite films were morphologically (through SEM and atomic force microscopy (AFM)) and structurally (through FT-IR and Raman spectroscopy) characterized. The thermal behavior of the composite films was also determined. The SEM and AFM analyses showed the presence of micro-structured hydroxyapatite particles in the film’s structure, as well as changes in the surface morphology. There was a significant decrease in the crystallinity of the composite films compared to the pure polymer, this being explained by a decrease in the arrangement of the polymer chains and a concurrent increase in the degree of their clutter. The presence of hydroxyapatite crystals did not have a significant influence on the degradation temperature of the composite film.


Author(s):  
Abd Halim Shamsuddin ◽  
Mohd Shahir Liew

Malaysia has about 4.2 million hectares of oil palm plantation. The palm oil milling industry has over 400 mills throughout the country with total milling capacity of 82 million tonnes fresh fruit bunches, FFB, per year. In 2003, the amount of FFB processed was 67 million tonnes, which generated solid wastes in the forms of empty fruit bunches, EFB (19.43 million tonnes), mesocarp fibres (12.07 million tonnes) and palm kernel shell (4.89 million tonnes). These wastes has moisture content of 60–70% for EFB and mesocarp fibre, and 34–40% for palm kernel shell, and calorific value of 5.0 – 18.0 Mj/kg. A processing technology was developed to process these low quality biomass fuels into high quality solid biofuel briquettes with moisture content in the range 8–12%. Depending on the formulations and the sources of the raw biomass, the final solid biofuel briquettes can have calorific values in the range of 18–25 Mj/kg. The production of the solid biofuel briquettes would be an attractive financial advantage for full exploitation of biomass fuels. Logistic problems due to the disperse nature of the biomass resources would significantly be addressed.


Author(s):  
Biplab K. Debnath ◽  
Ujjwal K. Saha ◽  
Niranjan Sahoo

Palm Oil Methyl Ester (POME) is a very promising alternative renewable biofuel. This is because it has a better cetane number and a comparable lower calorific value with respect to its competitors. However, due to difference in molecular composition and hence dissimilar properties, it does not perform proficiently in diesel engine with standard design and operating parameters. Therefore, a study is arranged to realize the effect of compression ratio variation on POME run in diesel engine. The load is varied from ‘no load’ to ‘full load’ with six equal intervals. During this study, standard diesel injection timing is maintained unaffected. The study conveys that at higher compression ratio, POME causes reduction in brake fuel consumption and thereby increases the engine efficiency. The increase in compression ratio also causes smoother combustion, lower ignition delay with early heat release than diesel operation. The detrimental emission quantities in the form of carbon monoxide, oxides of nitrogen and hydrocarbon emissions are also cut down with presence of POME in the diesel engine at high compression ratio. Thus, POME can be regarded as a good alternative fuel for diesel engine for locomotive applications.


e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Mehdi Ghafghazi ◽  
Masoud Esfandeh ◽  
Jalil Morshedian

AbstractThis paper describes the preparation of Epoxy/Urethane (EP/PU) graft interpenetrating polymer networks (g-IPNs) and investigates the effect of EP/PU weight ratio and urethane's prepolymer molecular weight on the mechanical, morphological and thermal properties of the IPN system. Here, g-IPN was prepared by thorough mixing of an isocyanate-terminated urethane prepolymer with an epoxy resin followed by simultaneous curing of the resins. Polytetra hydrofuranate (PTHF), molecular weights (Mw) 1000, 2000 and 3000 g/gmol, was used to prepare urethane prepolymers. EP/PU weight ratios were 75/25, 50/50, 30/70 and 15/85. Disappearance of epoxide and isocyanate functional groups was followed by Fourier Transform Infrared spectroscopy (FT-IR), showing curing of the resins. Differential Scanning Calorimetry (DSC) was used to investigate the glass transition temperature (Tg) of the IPNs. Thermal Gravimetric Analysis (TGA), Dynamic Mechanical Thermal Analysis (DMTA), tensile measurements and Scanning Electron Microscopy (SEM) were used to study thermal, mechanical and morphological properties of the prepared systems. The best mechanical properties were obtained at EP/PU weight ratio 75/25 which also shows a fine and uniformly dispersed morphology. Moreover, at this ratio, with increasing PTHF Mw in the urethane prepolymer, the mechanical properties were improved whereas a decrease was observed in Tg and thermal degradation temperature of g-IPNs.


Sign in / Sign up

Export Citation Format

Share Document