Model-based robust control design and experimental validation of SCARA robot system with uncertainty

2022 ◽  
pp. 107754632110421
Author(s):  
ShengChao Zhen ◽  
MuCun Ma ◽  
XiaoLi Liu ◽  
Feng Chen ◽  
Han Zhao ◽  
...  

In this paper, we design a novel robust control method to reduce the trajectory tracking errors of the SCARA robot with uncertainties including parameters such as uncertainty of the mechanical system and external disturbance, which are time-varying and nonlinear. Then, we propose a deterministic form of the model-based robust control algorithm to deal with the uncertainties. The proposed control algorithm is composed of two parts according to the assumed upper limit of the system uncertainties: one is the traditional proportional-derivative control, and the other is the robust control based on the Lyapunov method, which has the characteristics of model-based and error-based. The stability of the proposed control algorithm is proved by the Lyapunov method theoretically, which shows the system can maintain uniformly bounded and uniformly ultimately bounded. The experimental platform includes the rapid controller prototyping cSPACE, which is designed to reduce programming time and to improve the efficiency of the practical operation. Moreover, we adopt different friction models to investigate the effect of friction on robot performance in robot joints. Finally, numerical simulation and experimental results indicate that the control algorithm proposed in this paper has desired control performance on the SCARA robot.

2018 ◽  
Vol 15 (6) ◽  
pp. 172988141881151
Author(s):  
Zhang Wenhui ◽  
Li Hongsheng ◽  
Ye Xiaoping ◽  
Huang Jiacai ◽  
Huo Mingying

It is difficult to obtain a precise mathematical model of free-floating space robot for the uncertain factors, such as current measurement technology and external disturbance. Hence, a suitable solution would be an adaptive robust control method based on neural network is proposed for free-floating space robot. The dynamic model of free-floating space robot is established; a computed torque controller based on exact model is designed, and the controller can guarantee the stability of the system. However, in practice, the mathematical model of the system cannot be accurately obtained. Therefore, a neural network controller is proposed to approximate the unknown model in the system, so that the controller avoids dependence on mathematical models. The adaptive learning laws of weights are designed to realize online real-time adjustment. The adaptive robust controller is designed to suppress the external disturbance and compensate the approximation error and improve the robustness and control precision of the system. The stability of closed-loop system is proved based on Lyapunov theory. Simulations tests verify the effectiveness of the proposed control method and are of great significance to free-floating space robot.


2014 ◽  
Vol 685 ◽  
pp. 368-372 ◽  
Author(s):  
Hao Zhang ◽  
Ya Jie Zhang ◽  
Yan Gu Zhang

In this study, we presented a boiler combustion robust control method under load changes based on the least squares support vector machine, PID parameters are on-line adjusted and identified by LSSVM, optimum control output is obtained. The simulation result shows control performance of the intelligent control algorithm is superior to traditional control algorithm and fuzzy PID control algorithm, the study provides a new control method for strong non-linear boiler combustion control system.


2017 ◽  
Vol 40 (9) ◽  
pp. 2901-2911 ◽  
Author(s):  
Zhangbao Xu ◽  
Dawei Ma ◽  
Jianyong Yao

In this paper, an adaptive robust controller with uniform robust exact differentiator has been proposed for a class of nonlinear systems with structured and unstructured uncertainties. The adaptive robust controller is integrated with an uniform robust differentiator to handle the problem of the incalculable part of the derivative of virtual controls and the differential explosion happened in backstepping techniques. The stability of the closed loop system is demonstrated via Lyapunov method ensuring a prescribed transient and tracking performance. Simulation and experimental results are carried out to verify the advantages of the proposed method.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yaxiong Wang ◽  
Feng Kang ◽  
Taipeng Wang ◽  
Hongbin Ren

In-wheel motored powertrain on electric vehicles has more potential in maneuverability and active safety control. This paper investigates the longitudinal and lateral integrated control through the active front steering and yaw moment control systems considering the saturation characteristics of tire forces. To obtain the vehicle sideslip angle of mass center, the virtual lateral tire force sensors are designed based on the unscented Kalman filtering (UKF). And the sideslip angle is estimated by using the dynamics-based approaches. Moreover, based on the estimated vehicle state information, an upper level control system by using robust control theory is proposed to specify a desired yaw moment and correction front steering angle to work on the electric vehicles. The robustness of proposed algorithm is also analyzed. The wheel torques are distributed optimally by the wheel torque distribution control algorithm. Numerical simulation is carried out in Matlab/Simulink-Carsim cosimulation environment to demonstrate the effectiveness of the designed robust control algorithm for lateral stability control of in-wheel motored vehicle.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1896 ◽  
Author(s):  
Antonio Rosales ◽  
Pedro Ponce ◽  
Hiram Ponce ◽  
Arturo Molina

Distributed generators (DGs) based on renewable energy systems such as wind turbines, solar panels, and storage systems, are key in transforming the current electric grid into a green and sustainable network. These DGs are called inverter-interfaced systems because they are integrated into the grid through power converters. However, inverter-interfaced systems lack inertia, deteriorating the stability of the grid as frequency and voltage oscillations emerge. Additionally, when DGs are connected to the grid, its robustness against unbalanced conditions must to be ensured. This paper presents a robust control scheme for power regulation in DGs, which includes inertia and operates under unbalanced conditions. The proposed scheme integrates a robust control algorithm to ensured power regulation, despite unbalanced voltages. The control algorithm is an artificial hydrocarbon network controller, which is a chemically-inspired technique, based on carbon networks, that provides stability, robustness, and accuracy. The robustness and stability of the proposed control scheme are tested using Lyapunov techniques. Simulation, considering one- and three-phase voltage sags, is executed to validate the performance of the control scheme.


Author(s):  
Dingding Cheng ◽  
Lijun Liu ◽  
Zhen Yu

Traditional steady-state control methods are applied to turbofan engines operating in the small region near certain operating conditions, which need to switch controllers for operating in the large region and then may lead to instability and performance degradation of the closed-loop system. In this paper, a novel multivariable nonlinear robust control method for turbofan engines is proposed to improve the control performance within the large region. To enlarge the controllable region, a polynomial state-space model describes the nonlinear characteristics of turbofan engines. Based on the analysis of the closed-loop control system, by using the Lyapunov function theorems, a polynomial robust controller is designed to ensure the stability and desired nonlinear control performance of turbofan engines. Compared with the classical PI, mixed sensitivity, and H∞ control, simulation results show that the proposed method has better transient responses, disturbance rejection, and other control performance for the turbofan engine within the large region.


Author(s):  
Yuteng Cao ◽  
Dengqing Cao ◽  
Guiqin He ◽  
Yuxin Hao ◽  
Xinsheng Ge

The dynamical model for the spacecraft with multiple solar panels and the cooperative controller for such spacecraft are studied in this paper. The spacecraft consists of a rigid platform and two groups of flexible solar panels, where solar panels could be driven to rotate by the connecting shaft. The flexible solar panel involves the use of the orthogonal polynomial in two directions to describe its elastic deformation. By using the Rayleigh–Ritz method, the characteristic equation is derived to obtain natural frequencies and modal shapes of the whole spacecraft. Then the discrete rigid-flexible coupled dynamical equation of the spacecraft is obtained by using the Hamiltonian principle. The equation involves the coupling of the attitude maneuver, solar panels’ driving and vibration suppression. These dynamical behaviors are addressed by the rigid-flexible coupled mode for the first time in this paper. Based on the dynamical equation, the cooperative control scheme is designed by combing the proportional-differential and robust control method. Numerical results show the accuracy of the present modelling method and the validation of the control strategy. The modal analysis implies the complex rigid-flexible coupled characteristic between the central platform and flexible solar panels. The proposed control scheme can maintain the attitude stability while solar panels are being driven, as well as the vibration suppression of flexible solar panels.


Sign in / Sign up

Export Citation Format

Share Document