eastern equine encephalitis virus
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 43)

H-INDEX

26
(FIVE YEARS 4)

Author(s):  
Philip M Armstrong ◽  
Theodore G Andreadis

Abstract In the current review, we examine the regional history, ecology, and epidemiology of eastern equine encephalitis virus (EEEV) to investigate the major drivers of disease outbreaks in the northeastern United States. EEEV was first recognized as a public health threat during an outbreak in eastern Massachusetts in 1938, but historical evidence for equine epizootics date back to the 1800s. Since then, sporadic disease outbreaks have reoccurred in the Northeast with increasing frequency and northward expansion of human cases during the last 20 yr. Culiseta melanura (Coquillett) (Diptera: Culicidae) serves as the main enzootic vector that drives EEEV transmission among wild birds, but this mosquito species will occasionally feed on mammals. Several species have been implicated as bridge vectors to horses and humans, with Coquilletstidia perturbans (Walker) as a leading suspect based on its opportunistic feeding behavior, vector competence, and high infection rates during recent disease outbreaks. A diversity of bird species are reservoir competent, exposed to EEEV, and serve as hosts for Cs. melanura, with a few species, including the wood thrush (Hlocichia mustelina) and the American robin (Turdus migratorius), contributing disproportionately to virus transmission based on available evidence. The major factors responsible for the sustained resurgence of EEEV are considered and may be linked to regional landscape and climate changes that support higher mosquito densities and more intense virus transmission.


Author(s):  
John-Paul Mutebi ◽  
Abigail A Mathewson ◽  
Susan P Elias ◽  
Sara Robinson ◽  
Alan C Graham ◽  
...  

Abstract Vertebrate surveillance for eastern equine encephalitis virus (EEEV) activity usually focuses on three types of vertebrates: horses, passerine birds, and sentinel chicken flocks. However, there is a variety of wild vertebrates that are exposed to EEEV infections and can be used to track EEEV activity. In 2009, we initiated a pilot study in northern New England, United States, to evaluate the effectiveness of using wild cervids (free-ranging white-tailed deer and moose) as spatial sentinels for EEEV activity. In Maine, New Hampshire, and Vermont during 2009–2017, we collected blood samples from hunter-harvested cervids at tagging stations and obtained harvest location information from hunters. U.S. Centers for Disease Control and Prevention processed the samples for EEEV antibodies using plaque reduction neutralization tests (PRNTs). We detected EEEV antibodies in 6 to 17% of cervid samples in the different states and mapped cervid EEEV seropositivity in northern New England. EEEV antibody-positive cervids were the first detections of EEEV activity in the state of Vermont, in northern Maine, and northern New Hampshire. Our key result was the detection of the antibodies in areas far outside the extent of documented wild bird, mosquito, human case, or veterinary case reports of EEEV activity in Maine, New Hampshire, and Vermont. These findings showed that cervid (deer and moose) serosurveys can be used to characterize the geographic extent of EEEV activity, especially in areas with low EEEV activity or with little or no EEEV surveillance. Cervid EEEV serosurveys can be a useful tool for mapping EEEV activity in areas of North America in addition to northern New England.


Author(s):  
Nathan D Burkett-Cadena ◽  
Jonathan F Day ◽  
Thomas R Unnasch

Abstract Eastern equine encephalitis virus (EEEV; family Togaviridae, genus Alphavirus) is a mosquito-borne pathogen found in eastern North America that causes severe disease in humans and horses. The mosquito Culiseta melanura (Coquillett) (Diptera: Culicidae) is the primary enzootic vector of EEEV throughout eastern North America while several mosquito species belonging to diverse genera serve as bridge vectors. The ecology of EEEV differs between northern and southern foci, with respect to phenology of outbreaks, important vertebrate hosts, and bridge vector species. Active transmission is limited to roughly half of the year in northern foci (New York, New Hampshire, Massachusetts, Connecticut), while year-round transmission occurs in the southeastern region (particularly Florida). Multiple phylogenetic analyses indicate that EEEV strains circulating in northern foci are likely transported from southern foci by migrating birds. Bird species that overwinter or migrate through Florida, are bitten by Cs. melanura in late spring, and arrive at northern breeding grounds in May are the most likely candidates to disperse EEEV northward. Available data indicate that common yellowthroat and green heron satisfy these criteria and could serve as virus dispersers. Understanding the factors that drive the phenology of Cs. melanura reproduction in the south and the timing of avian migration from southern foci could provide insight into how confluence of these biological phenomena shapes outbreaks of EEE throughout its range. This information could be used to develop models predicting the likelihood of outbreaks in a given year, allowing vector control districts to more efficiently marshal resources necessary to protect their stakeholders.


Author(s):  
Alexander T Ciota

Abstract Eastern equine encephalitis virus (EEEV; Togaviridae, Alphavirus) is an arthropod-borne virus (arbovirus) primarily maintained in an enzootic cycle between Culiseta melanura (Coquillett) and passerine birds. EEEV, which has the highest reported case- fatality rate among arbovirus in the Americas, is responsible for sporadic outbreaks in the Eastern and Midwest United States. Infection is associated with severe neurologic disease and mortality in horses, humans, and other vertebrate hosts. Here, we review what is known about EEEV taxonomy, functional genomics, and evolution, and identify gaps in knowledge regarding the role of EEEV genetic diversity in transmission and disease.


Author(s):  
Ann M Powers

Abstract Eastern equine encephalitis virus (EEEV; Family Togaviridae), is an endemic pathogen first isolated in 1933 with distribution primarily in the eastern US and Canada. The virus has caused periodic outbreaks in both humans and equines along the eastern seaboard and through the southern coastal states. While the outbreaks caused by EEEV have been sporadic and varied geographically since the discovery of the virus, it has continued to expand its range moving into the Midwest states as well. Additionally, one of the largest outbreaks was recorded in 2019 prompting concerns that outbreaks were becoming larger and more frequent. Because the virus can cause serious disease and because it is transmissible by both mosquitoes and aerosol, there has been renewed interest in identifying potential options for vaccines. Currently, there are no licensed vaccines and control relies completely on the use of personal protective measures and integrated vector control which have limited effectiveness for the EEEV vectors. Several vaccine candidates are currently being developed; this review will describe the multiple options under consideration for future development and assess their relative advantages and disadvantages.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 983
Author(s):  
Laura H. V. G. Gil ◽  
Tereza Magalhaes ◽  
Beatriz S. A. S. Santos ◽  
Livia V. Oliveira ◽  
Edmilson F. Oliveira-Filho ◽  
...  

Madariaga virus (MADV) is a member of the eastern equine encephalitis virus (EEEV) complex that circulates in Central and South America. It is a zoonotic, mosquito-borne pathogen, belonging to the family Togaviridae. Disturbances in the natural transmission cycle of this virus result in outbreaks in equines and humans, leading to high case fatality in the former and acute febrile illness or neurological disease in the latter. Although a considerable amount of knowledge exists on the eco-epidemiology of North American EEEV strains, little is known about MADV. In Brazil, the most recent isolations of MADV occurred in 2009 in the States of Paraíba and Ceará, northeast Brazil. Because of that, health authorities have recommended vaccination of animals in these regions. However, in 2019 an equine encephalitis outbreak was reported in a municipality in Ceará. Here, we present the isolation of MADV from two horses that died in this outbreak. The full-length genome of these viruses was sequenced, and phylogenetic analyses performed. Pathological findings from postmortem examination are also discussed. We conclude that MADV is actively circulating in northeast Brazil despite vaccination programs, and call attention to this arbovirus that likely represents an emerging pathogen in Latin America.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 973
Author(s):  
S. Saif Hasan ◽  
Debajit Dey ◽  
Suruchi Singh ◽  
Matthew Martin

Alphaviruses are arboviruses that cause arthritis and encephalitis in humans. Eastern Equine Encephalitis Virus (EEEV) is a mosquito-transmitted alphavirus that is implicated in severe encephalitis in humans with high mortality. However, limited insights are available into the fundamental biology of EEEV and residue-level details of its interactions with host proteins. In recent years, outbreaks of EEEV have been reported mainly in the United States, raising concerns about public safety. This review article summarizes recent advances in the structural biology of EEEV based mainly on single-particle cryogenic electron microscopy (cryoEM) structures. Together with functional analyses of EEEV and related alphaviruses, these structural investigations provide clues to how EEEV interacts with host proteins, which may open avenues for the development of therapeutics.


Author(s):  
S. Saif Hasan ◽  
Debajit Dey ◽  
Suruchi Singh ◽  
Matthew Martin

Alphaviruses are arboviruses that cause arthritis and encephalitis in humans. Eastern Equine Encephalitis Virus (EEEV) is a mosquito transmitted alphavirus that is implicated in severe encephalitis in humans with high mortality. However, limited insights are available into its fundamental biology of EEEV and residue-level details of its interactions with host proteins. In recent years, outbreaks of EEEV have been reported mainly in the United States, raising concerns about public safety. This review article summarizes recent advances in the structural biology of EEEV based mainly on recent single particle cryogenic electron microscopy (cryoEM) structures. Together with functional analyses of EEEV and related alphaviruses, these structural investigations provide clues to how EEEV interacts with host proteins, which may open avenues for the development of therapeutics.


2021 ◽  
Vol 27 (7) ◽  
pp. 1886-1892
Author(s):  
Holly R. Hughes ◽  
Jason O. Velez ◽  
Emily H. Davis ◽  
Janeen Laven ◽  
Carolyn V. Gould ◽  
...  

2021 ◽  
Vol 15 (6) ◽  
pp. e0009424
Author(s):  
John C. Trefry ◽  
Franco D. Rossi ◽  
Michael V. Accardi ◽  
Brandi L. Dorsey ◽  
Thomas R. Sprague ◽  
...  

Most alphaviruses are mosquito-borne and can cause severe disease in humans and domesticated animals. In North America, eastern equine encephalitis virus (EEEV) is an important human pathogen with case fatality rates of 30–90%. Currently, there are no therapeutics or vaccines to treat and/or prevent human infection. One critical impediment in countermeasure development is the lack of insight into clinically relevant parameters in a susceptible animal model. This study examined the disease course of EEEV in a cynomolgus macaque model utilizing advanced telemetry technology to continuously and simultaneously measure temperature, respiration, activity, heart rate, blood pressure, electrocardiogram (ECG), and electroencephalography (EEG) following an aerosol challenge at 7.0 log10 PFU. Following challenge, all parameters were rapidly and substantially altered with peak alterations from baseline ranged as follows: temperature (+3.0–4.2°C), respiration rate (+56–128%), activity (-15-76% daytime and +5–22% nighttime), heart rate (+67–190%), systolic (+44–67%) and diastolic blood pressure (+45–80%). Cardiac abnormalities comprised of alterations in QRS and PR duration, QTc Bazett, T wave morphology, amplitude of the QRS complex, and sinoatrial arrest. An unexpected finding of the study was the first documented evidence of a critical cardiac event as an immediate cause of euthanasia in one NHP. All brain waves were rapidly (12–24 hpi) and profoundly altered with increases of up to 6,800% and severe diffuse slowing of all waves with decreases of ~99%. Lastly, all NHPs exhibited disruption of the circadian rhythm, sleep, and food/fluid intake. Accordingly, all NHPs met the euthanasia criteria by ~106–140 hpi. This is the first of its kind study utilizing state of the art telemetry to investigate multiple clinical parameters relevant to human EEEV infection in a susceptible cynomolgus macaque model. The study provides critical insights into EEEV pathogenesis and the parameters identified will improve animal model development to facilitate rapid evaluation of vaccines and therapeutics.


Sign in / Sign up

Export Citation Format

Share Document