electromagnetic probes
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 5)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. E. Mora-Ramos ◽  
J. A. Vinasco ◽  
D. Laroze ◽  
A. Radu ◽  
R. L. Restrepo ◽  
...  

AbstractWe theoretically investigate the electron and hole states in a semiconductor quantum dot-quantum ring coupled structure, inspired by the recent experimental report by Elborg and collaborators (2017). The finite element method constitutes the numerical technique used to solve the three-dimensional effective mass equation within the parabolic band approximation, including the effects of externally applied electric and magnetic fields. Initially, the features of conduction electron states in the proposed system appear discussed in detail, under different geometrical configurations and values of the intensity of the aforementioned electromagnetic probes. In the second part, the properties of an electron-hole pair confined within the very kind of structure reported in the reference above are investigated via a model that tries to reproduce as close as possible the developed profile. In accordance, we report on the energies of confined electron and hole, affected by the influence of an external electric field, revealing the possibility of field-induced separate spatial localization, which may result in an indirect exciton configuration. In relation with this fact, we present a preliminary analysis of such phenomenon via the calculation of the Coulomb integral.


Author(s):  
Vitor Cardoso ◽  
Wen-Di Guo ◽  
Caio F B Macedo ◽  
Paolo Pani

Abstract Gravitational-wave astronomy, together with precise pulsar timing and long baseline interferometry, is changing our ability to perform tests of fundamental physics with astrophysical observations. Some of these tests are based on electromagnetic probes or electrically charged bodies, and assume an empty universe. However, the cosmos is filled with plasma, a dilute medium which prevents the propagation of low-frequency, small-amplitude electromagnetic waves. We show that the plasma hinders our ability to perform some strong-field gravity tests, in particular: (i) nonlinear plasma effects dramatically quench plasma-driven superradiant instabilities; (ii) the contribution of electromagnetic emission to the inspiral of charged black hole binaries is strongly suppressed; (iii) electromagnetic-driven secondary modes, although present in the spectrum of charged black holes, are excited to negligible amplitude in the gravitational-wave ringdown signal. The last two effects are relevant also in the case of massive fields that propagate in vacuum and can jeopardize tests of modified theories of gravity containing massive degrees of freedom.


2020 ◽  
Vol 195 ◽  
pp. 01031
Author(s):  
Stefano Utili

The use of electrical conductivity measurements from a non-invasive hand held electromagnetic probe is showcased to monitor the water content of earthen embankments at routine inspections. A methodology to convert the electrical conductivity measurements from the electromagnetic device into water content values is illustrated. The methodology is based on measuring the soil electrical conductivity variation with respect to a baseline reference condition and calibrating a water content – electrical conductivity relationship by comparing electrical conductivity readings from the electromagnetic probes with water content readings taken from geotechnical probes installed in a few sections of the embankment. The values of water content converted from the conductivity measurements according to the proposed procedure were found to be in very good agreement with independent measures of water content taken at times well beyond the calibration period.


2020 ◽  
Vol 235 ◽  
pp. 03001
Author(s):  
Thomas Peitzmann

I review recent developments in the study of the low-x partonic content of pro- tons and nuclei, with a focus on the latter, as one expects possible deviations from linear QCD evolution to be most pronounced in that case. I give examples of recent theoretical descriptions of HERA measurements with a focus on the role of BFKL evolution. I then concentrate on the status and assumptions of nuclear PDFs and the possibility to use for- ward particle production at the LHC as further constraint, in particular measurements of open charm and the potential of electromagnetic probes.


2019 ◽  
Vol 340 (1-3) ◽  
pp. 157-162
Author(s):  
T. Song ◽  
E. Bratkovskaya ◽  
W. Cassing ◽  
P. Moreau

2017 ◽  
Vol 140 (5) ◽  
Author(s):  
Craig Nolen ◽  
Melissa Poerner

The distribution of water in the diffuser of a wet gas compressor is not well understood. Measurements of water film thickness across the diffuser surface would improve the understanding of two-phase flow phenomena in wet gas compressors. Electromagnetic probes were designed in order to measure water film thickness in the diffuser of a SwRI-designed wet gas compressor. The probes consisted of two electrode foils plated on a thin insulating substrate, allowing them to be bonded in place without drilling through the diffuser. An AC signal was passed between the electrodes, and the voltage across a resistor in series with the electrodes was recorded. As the water level covering the electrodes increased, the recorded voltage increased. A method of calibrating the probes was developed and used prior to installation in the diffuser. Testing showed the probes to be effective at detecting the presence of water in the diffuser and indicating the general water level. Improvements in probe design, calibration, and installation are needed to provide more precise water film thickness data.


Author(s):  
Craig Nolen ◽  
Melissa Poerner

The distribution of water in the diffuser of a wet gas compressor is not well understood. Measurements of water film thickness across the diffuser surface would improve the understanding of two-phase flow phenomena in wet gas compressors. Electromagnetic probes were designed in order to measure water film thickness in the diffuser of a SwRI-designed wet gas compressor. The probes consisted of two electrode foils plated on a thin insulating substrate, allowing them to be bonded in place without drilling through the diffuser. An AC signal was passed between the electrodes, and the voltage across a resistor in series with the electrodes was recorded. As the water level covering the electrodes increased, the recorded voltage increased. A method of calibrating the probes was developed and used prior to installation in the diffuser. Testing showed the probes to be effective at detecting the presence of water in the diffuser and indicating the general water level. Improvements in probe design, calibration, and installation are needed to provide more precise water film thickness data.


Sign in / Sign up

Export Citation Format

Share Document