elite allele
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 4)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Yujiao Gao ◽  
Kexin An ◽  
Weiwei Guo ◽  
Yongming Chen ◽  
Ruijie Zhang ◽  
...  

Abstract In wheat (Triticum aestivum L.), breeding efforts have focused intensively on improving grain yield and quality. For quality, the content and composition of seed storage proteins (SSPs) determine the elasticity of wheat dough and flour processing quality. Moreover, starch levels in seeds are associated with yield. However, little is known about the mechanisms that coordinate SSP and starch accumulation in wheat. In this study, we explored the role of the endosperm-specific NAC transcription factor TaNAC019 in coordinating SSP and starch accumulation. TaNAC019 binds to the promoters of TaGlu-1 loci, encoding high molecular weight glutenin (HMW-GS), and of starch metabolism genes. Triple knock-out mutants of all three TaNAC019 homoeologs exhibited reduced transcript levels for all SSP types and genes involved in starch metabolism, leading to lower gluten and starch contents, and in flour processing quality parameters. TaNAC019 directly activated the expression of HMW-GS genes by binding to a specific motif in their promoters and interacting with the TaGlu-1 regulator TaGAMyb. TaNAC019 also indirectly regulated the expression of TaSPA, an ortholog of maize Opaque2 that activates SSP accumulation. Therefore, TaNAC019 regulation of starch- and SSP-related genes has key roles in wheat grain quality. Finally, we identified an elite allele (TaNAC019-BI) associated with flour processing quality, providing a candidate gene for breeding wheat with improved quality.


2020 ◽  
Vol 7 (11) ◽  
pp. 1776-1786 ◽  
Author(s):  
Shoudong Wang ◽  
Shulin Liu ◽  
Jie Wang ◽  
Kengo Yokosho ◽  
Bin Zhou ◽  
...  

Abstract Soybean accounts for more than half of the global production of oilseed and more than a quarter of the protein used globally for human food and animal feed. Soybean domestication involved parallel increases in seed size and oil content, and a concomitant decrease in protein content. However, science has not yet discovered whether these effects were due to selective pressure on a single gene or multiple genes. Here, re-sequencing data from >800 genotypes revealed a strong selection during soybean domestication on GmSWEET10a. The selection of GmSWEET10a conferred simultaneous increases in soybean-seed size and oil content as well as a reduction in the protein content. The result was validated using both near-isogenic lines carrying substitution of haplotype chromosomal segments and transgenic soybeans. Moreover, GmSWEET10b was found to be functionally redundant with its homologue GmSWEET10a and to be undergoing selection in current breeding, leading the the elite allele GmSWEET10b, a potential target for present-day soybean breeding. Both GmSWEET10a and GmSWEET10b were shown to transport sucrose and hexose, contributing to sugar allocation from seed coat to embryo, which consequently determines oil and protein contents and seed size in soybean. We conclude that past selection of optimal GmSWEET10a alleles drove the initial domestication of multiple soybean-seed traits and that targeted selection of the elite allele GmSWEET10b may further improve the yield and seed quality of modern soybean cultivars.


2016 ◽  
Vol 7 ◽  
Author(s):  
Wisdom M. Edzesi ◽  
Xiaojing Dang ◽  
Lijun Liang ◽  
Erbao Liu ◽  
Imdad U. Zaid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document