ferromanganese nodules
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 33)

H-INDEX

31
(FIVE YEARS 3)

Geoderma ◽  
2022 ◽  
Vol 405 ◽  
pp. 115445
Author(s):  
Péter Sipos ◽  
Ivett Kovács ◽  
Réka Balázs ◽  
Adrienn Tóth ◽  
Gyöngyi Barna ◽  
...  

2021 ◽  
Author(s):  
◽  
Andrea Davies

<p>Ferromanganese nodules are authigenic marine sediments that form over millions of years from the precipitation of Fe oxyhydroxides and Mn oxides from seawater (hydrogenetic-type growth) and sediment pore-water (diagenetic-type growth). Fe-Mn (oxyhydr)oxides grow in layers about nuclei, effectively scavenging minor metals such as Ni, Cu and Co from the waters they grow in. The uptake of different elements into the ferromanganese nodules reflects their environment and mechanism of growth, and these deposits are of interest both as a potential source of metals of economic interest, and as records of changing ocean conditions. This study investigates the composition of 77 ferromanganese nodules from the seafloor around New Zealand. Samples analysed come from locations several thousand kilometres apart under the same water mass (Lower Circumpolar Deep Water – LCDW), but with varying depth, current velocity, and sediment type. The outermost 1 mm rim of each nodule, representing near-modern growth, was sampled to compare with modern environmental parameters including substrate sediment composition and chemical and physical oceanography. Major, minor, and trace element analysis of nodule rims were undertaken, and the authigenic and detrital components examined via leaching experiments to evaluate their relative influence on growth mechanisms. Overall, New Zealand ferromanganese nodules are hydrogenetic in origin. However, there are systematic variations in composition that reflect variable diagenetic influence. Hydrogenetic endmember compositions are defined by samples from two localities in the Southern Ocean that have no evidence for diagenetic influence. Diagenetic influence on nodule composition is exemplified by samples from the two locations in the Tasman Sea, but also include nodules from the Campbell nodule field. Nodules from the Campbell nodule field come from two transects perpendicular to the Campbell Plateau, and the Deep Western Boundary Current (DWBC). Both sediment composition and nodule rim chemistry vary systematically across both transects. Areas closest to the slope have sediment profiles indicating high energy, erosive environments, continental-sourced sand components, and are dominated by nodules with hydrogenetic chemical characteristics similar to those of the Southern Ocean. Further from the slope, the sediment profiles indicate silt dominated sediments of a more oceanic crustal provenance, lower energy environment, and increased influence of oxic diagenetic processes on the major, minor and trace element profiles of the nodules. No hydrothermal contribution was identified in the chemistry of any of the nodules analysed. The physical and chemical properties of the sediment, along with current velocities, were found to be the key influences in diagenetic enrichment in the nodules. The influence of seawater chemistry was difficult to determine due to the lack of direct analyses in the area. Ferromanganese nodule chemistry is a function of the nodule environment, including water body, sediment composition and depth. The authigenic components of nodules can therefore be used to investigate the deep-sea environment. The redox conditions of sediments and the productivity of the overlying water will affect the trace metal constituents of the pore-waters of a sediment (Kuhn et al., 2017). Sediments with a larger fraction of labile organic matter may result in trace element enrichment of the pore-water. Sediments below the CCD will be higher in trace elements than sediments below the CCD (U1413, U1406B, U1402, U1398, U1398, and U1378) due to carbonate matter acting as a dilutant that can limit the supply of trace elements mobilised in the pore-water during diagenesis (Glasby, 2006). Terrigenous clasts such as quartz (Chester, 1990), will also reduce trace element enrichment in the pore-water due to their low reactivity, e.g. for the sediment U1406B, which has a high lithic component (Table 3.2). Sediments with a higher biogenic silica component (such as U1373, U1374, and U1378) (Table 3.2, Table 3.4) are predicted to produce nodules with higher trace element contents (ISA, 2010). In contrast to both the CCZ and Indian Ocean nodules, the Campbell nodule field samples formed above the CCD, and hence in sediments that include a significant carbonate component. This minimises the trace element pore-water enrichment and can account for the lower Cu+Ni+Co contents observed in the Campbell nodule field nodules compared with those that formed below the CCD (CCZ and Indian Ocean).</p>


2021 ◽  
Author(s):  
◽  
Andrea Davies

<p>Ferromanganese nodules are authigenic marine sediments that form over millions of years from the precipitation of Fe oxyhydroxides and Mn oxides from seawater (hydrogenetic-type growth) and sediment pore-water (diagenetic-type growth). Fe-Mn (oxyhydr)oxides grow in layers about nuclei, effectively scavenging minor metals such as Ni, Cu and Co from the waters they grow in. The uptake of different elements into the ferromanganese nodules reflects their environment and mechanism of growth, and these deposits are of interest both as a potential source of metals of economic interest, and as records of changing ocean conditions. This study investigates the composition of 77 ferromanganese nodules from the seafloor around New Zealand. Samples analysed come from locations several thousand kilometres apart under the same water mass (Lower Circumpolar Deep Water – LCDW), but with varying depth, current velocity, and sediment type. The outermost 1 mm rim of each nodule, representing near-modern growth, was sampled to compare with modern environmental parameters including substrate sediment composition and chemical and physical oceanography. Major, minor, and trace element analysis of nodule rims were undertaken, and the authigenic and detrital components examined via leaching experiments to evaluate their relative influence on growth mechanisms. Overall, New Zealand ferromanganese nodules are hydrogenetic in origin. However, there are systematic variations in composition that reflect variable diagenetic influence. Hydrogenetic endmember compositions are defined by samples from two localities in the Southern Ocean that have no evidence for diagenetic influence. Diagenetic influence on nodule composition is exemplified by samples from the two locations in the Tasman Sea, but also include nodules from the Campbell nodule field. Nodules from the Campbell nodule field come from two transects perpendicular to the Campbell Plateau, and the Deep Western Boundary Current (DWBC). Both sediment composition and nodule rim chemistry vary systematically across both transects. Areas closest to the slope have sediment profiles indicating high energy, erosive environments, continental-sourced sand components, and are dominated by nodules with hydrogenetic chemical characteristics similar to those of the Southern Ocean. Further from the slope, the sediment profiles indicate silt dominated sediments of a more oceanic crustal provenance, lower energy environment, and increased influence of oxic diagenetic processes on the major, minor and trace element profiles of the nodules. No hydrothermal contribution was identified in the chemistry of any of the nodules analysed. The physical and chemical properties of the sediment, along with current velocities, were found to be the key influences in diagenetic enrichment in the nodules. The influence of seawater chemistry was difficult to determine due to the lack of direct analyses in the area. Ferromanganese nodule chemistry is a function of the nodule environment, including water body, sediment composition and depth. The authigenic components of nodules can therefore be used to investigate the deep-sea environment. The redox conditions of sediments and the productivity of the overlying water will affect the trace metal constituents of the pore-waters of a sediment (Kuhn et al., 2017). Sediments with a larger fraction of labile organic matter may result in trace element enrichment of the pore-water. Sediments below the CCD will be higher in trace elements than sediments below the CCD (U1413, U1406B, U1402, U1398, U1398, and U1378) due to carbonate matter acting as a dilutant that can limit the supply of trace elements mobilised in the pore-water during diagenesis (Glasby, 2006). Terrigenous clasts such as quartz (Chester, 1990), will also reduce trace element enrichment in the pore-water due to their low reactivity, e.g. for the sediment U1406B, which has a high lithic component (Table 3.2). Sediments with a higher biogenic silica component (such as U1373, U1374, and U1378) (Table 3.2, Table 3.4) are predicted to produce nodules with higher trace element contents (ISA, 2010). In contrast to both the CCZ and Indian Ocean nodules, the Campbell nodule field samples formed above the CCD, and hence in sediments that include a significant carbonate component. This minimises the trace element pore-water enrichment and can account for the lower Cu+Ni+Co contents observed in the Campbell nodule field nodules compared with those that formed below the CCD (CCZ and Indian Ocean).</p>


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1100
Author(s):  
Kentaro Nakamura ◽  
Daiki Terauchi ◽  
Ryo Shimomura ◽  
Shiki Machida ◽  
Kazutaka Yasukawa ◽  
...  

The three-dimensional layered growth structure of 934 ferromanganese nodule samples collected from dives in the Pacific Ocean around Minamitorishima Island was assessed using X-ray computed tomography (X-ray CT) to elucidate their growth history. The thickness of the layered structure measured in three orthogonal directions showed that the ferromanganese nodules grew equally in all directions regardless of shape and size. Based on differences in CT numbers, a layered structure was subdivided into sublayers I, II, III, and IV, which corresponded to petrological features. The nodules were then classified as Types I, II, III, and IV according to whether they had sublayers I, I and II, I–III, or I–IV, respectively. Correlations between the total thickness of the layers and the number of sublayers indicated that both represented the relative age of the nodules. Nodules with all these types were recovered from most of the sampling sites, and histograms of the total layer thickness at each dive site showed several peaks. These findings indicated that the initiation of nodule growth was intermittent, rather than simultaneous. Three distinct thickness peaks were found at many sites throughout the study area, suggesting that at least three nodule initiation events covering hundreds of kilometers initiated the growth of ferromanganese nodules.


Author(s):  
A. A. Sukhinov ◽  
A. A. Sukhinov ◽  
S. B. Kirilchik

The article is devoted to the suspensions’ distribution mathematical modeling in the Eastern Pacific Ocean for various scenarios for the ferromanganese nodules extraction. The suspensions propagation model with complex granulometric composition that can interact in an aqueous medium takes into account the suspensions microturbulent diffusion caused by the turbulent aqueous medium movement and the suspensions convection caused by the advective movement of water mass in the ocean; gravitational suspensions deposition under the gravity influence; mutual transitions between different fractions that make up the suspension; interaction of particles with the bottom and with the free surface.


2021 ◽  
Vol 9 (6) ◽  
pp. 1247
Author(s):  
Jing Lyu ◽  
Xinke Yu ◽  
Mingyu Jiang ◽  
Wenrui Cao ◽  
Gaowa Saren ◽  
...  

Ferromanganese nodules are an important mineral resource in the seafloor; however, the genetic mechanism is still unknown. The biomineralization of microorganisms appears to promote ferromanganese nodule formation. To investigate the possible mechanism of microbial–ferromanganese nodule interaction, to test the possibility of marine microorganisms as deposition template for ferromanganese nodules minerals, the interactions between Jeotgalibacillus campisalis strain CW126-A03 and ferromanganese nodules were studied. The results showed that strain CW126-A03 increased ion concentrations of Fe, Mn, and other metal elements in solutions at first. Then, metal ions were accumulated on the cells’ surface and formed ultra-micro sized mineral particles, even crystalline minerals. Strain CW126-A03 appeared to release major elements in ferromanganese nodules, and the cell surface may be a nucleation site for mineral precipitation. This finding highlights the potentially important role of biologically induced mineralization (BIM) in ferromanganese nodule formation. This BIM hypothesis provides another perspective for understanding ferromanganese nodules’ genetic mechanism, indicating the potential of microorganisms in nodule formation.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 310
Author(s):  
Tetsuo Yamazaki ◽  
Naoki Nakatani ◽  
Rei Arai ◽  
Tsunehiro Sekimoto ◽  
Hiroyuki Katayama

An examination of the technical and economic feasibility of the combined mining of the rare-earth element-rich mud (REE-rich mud) and ferromanganese nodules (FN) around Minamitorishima (Marcus) Island in Northwest Pacific is introduced. A previous study showed that the mining of REE-rich mud around Minamitorishima Island was not economically feasible. Therefore, in this study, three changes from the previous mining model to improve its economy are proposed. The first one is combined mining with FN in the area. The second one is introducing a pulp-lifting system that can lift both REE-rich mud and FN at high concentrations through a riser pipe. The third one is the reuse of waste mud and processed slag for construction materials. The economic evaluation results show a change from a slightly negative to quite positive economy depending on the mixing ratio of REE-rich mud and FN in the pulp-lifting. In addition, some technical approaches necessary to realize the combined mining method are introduced.


Sign in / Sign up

Export Citation Format

Share Document